
James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 1 of 6

Contents

Program Overview .. 2

Running the Solver .. 2

Comments on Program Structure ... 2

Complexity Analysis: Algorithmic Performance 2

Detailed Analysis ... 3

Motivations & Implications .. 4

Implementation Performance Benchmarking ... 4

Potential Improvements ... 5

Static Analysis & Type Annotations .. 6

Mathematical Comment .. 6

Abandoned Ideas .. 6

James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 2 of 6

Program Overview

The solution is developed in the single-file program solver.py.

• The language version and the development environment are:

Python 3.8, Ubuntu 20.04 LTS (Focal Fossa)

• Only modules from the Python Standard Library are used (i.e., no third-party libraries):

typing, string, argparse, os.path, pickle

• The program is organized via 6 Python functions, the main() function and 5 auxiliaries:

generate_lookup, get_results, parse_args, print_results, vectorize_word

• See the document docs_solver.pdf for the documentation generated via pydoc3.8 using

embedded docstrings and comments.

• Type annotations are used in the entirety of the program, and static analysis is

performed using mypy (v0.961).

• The source code is extensively documented using docstrings and embedded comments.

Running the Solver

The solver can be run by the user using either of two ways.

• Via the shell (e.g., bash, zsh, fish, …):

$./solver.py input
Note: Requires execution permissions by running chmod +x ./solver.py

• Via the Python interpreter:

$ python3 ./solver.py input

An optional argument can be provided (when omitted, it defaults to corncob_lowercase.txt):

 $./solver.py input -l wordlist_path

Comments on Program Structure

The implementation could be restructured into a class-based solution (or an object-oriented one),

where several of the function parameters can be eliminated, since these variables can be

accessed as object private members. For brief illustration:

class Solver:

 __input: str

 __wordlist: str

 …

Refactoring the solution as a class would also allow instantiating new Solver objects for multiple

wordlists. However, I chose to not unnecessarily complicate the program structure since the

application requires only an input/output mapping (Input ↦ Subanagrams) using a single word list

(defaulted to corncob_lowercase.txt).

Due to the procedural nature of the problem (and its provided solution), I preferred preserving

the current procedure-based solution that is implemented across six Python functions. In my

opinion, the additional abstraction is unnecessary, so I committed to the simpler structure.

Complexity Analysis: Algorithmic Performance

James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 3 of 6

The provided algorithm solves the search problem using a lookup table, implemented as Python

dictionaries. Its space and time complexities for each input type is summarized in the table:

 Against Input Word Size Against Word List Size
Space Complexity Constant �(1) Linear �(�)
Time Complexity Constant �(1) Linear �(�)

Detailed Analysis

Lookup tables typically have �(�) space complexity against the information for which they are

‘hashing’ and are a typical example of space-time tradeoff. Similarly, the algorithm’s space

complexity against the word list text file as input is also linear.

Lookup search scenario: (Covers the average run of the algorithm without lookup generation)

Refer to the function,

get_results(search_input: str) -> Set[str]:

Refer to the for loop in line 94:

94 for candidate in list(anagrams.keys()):

The number of candidate keys to iterate over will grow with the size of the word list (on average,

proportional) but is independent of the size of the input word.

Using a word list twice as large will produce a lookup file which consequently requires twice the

resources to process. The space and time complexity with respect to word list text file as input is

thus linear �(�). But regardless of the input word, the resources used are invariable. This implies

constant �(1) time and space complexity with respect to the user’s search input word.

Lookup generation scenario: (Covers the initial run of the algorithm to generate the lookup)

Refer to the function,

generate_lookup(wordlist_path: str) -> None

Its while loop (lines 49 to 60 below) creates the dictionaries and writes them in the lookup file.

The number of iterations in the loop is directly proportional to the word list’s number of lines

(and therefore words). This yields the same conclusions: the time, memory, and storage costs

are linear with respect to processing this word list.

46 # Read (from the word list) file line by line processing all contained words.

47 with open(wordlist_path, 'r', encoding='UTF-8') as wordlist_file:

48 word: str

49 while (word := wordlist_file.readline().rstrip()):

50 # Sort (letter-wise) each word and store in its `sorted_word` anagram.

51 sorted_word: str = ''.join(sorted(word))

52

53 if sorted_word not in anagrams:

54 # Create a new anagram set for an unencountered `sorted_word` key.

55 anagrams[sorted_word] = set()

James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 4 of 6

56 # Associate each `sorted_word` anagram key with its letter count.

57 vectors[sorted_word] = vectorize_word(sorted_word)

58

59 # Associate each anagram word with its `sorted_word` anagram key.

60 anagrams[sorted_word].add(word)

Motivations & Implications

A realistic application for this algorithm and implementation is the backend of a webserver. A

web app would provide users with an interface to request subanagrams. Example include

“Scrabble dictionaries” such as: wordfinder.yourdictionary.com.

On such a web app, the lookup table is going to be generated once, and updated infrequently as

new/more words are hashed. However, users will be requesting subanagrams at high frequency.

The implications for our algorithm are:

• Constant time and space costs �(1) against user input. Whether the user inputs car or

albhfsdkjabhwekljrhakejr, the runtime and memory costs are on average the same.

• Linear time and space costs �(�) against the word list. The server would proportionally

require more processing time, memory, and disk space as this list grows.

Thus, the choice of a lookup table is adequate, from an algorithmic point of view.

Implementation Performance Benchmarking

Algorithmic complexity informs only about cost growth against inputs, but does not inform about

the cost values. For this, implementation benchmarks for resource costs are added. The

benchmarking computer’s relevant hardware information is tabulated below:

PROCESSOR INFO MEMORY INFO STORAGE INFO
Intel® Core™ i3-8130U CPU
Base speed: 2.21 GHz
Sockets: 1
Cores: 2
Logical processors: 4
Virtualization: Enabled
L1 cache: 128 KB
L2 cache: 512 KB
L3 cache: 4.0 MB

Memory: 8.0 GB

Speed: 2400 MHz

Slots used: 1 of 2

Form factor: SODIMM

WDC PC SN520 SDAPNUW-256G-1006

Type: SSD

Read speed: 164 KB/s

Write speed: 94.0 KB/s

Average response time: 0.6 ms

The benchmark can be performed with the command:

$ /usr/bin/time --verbose python3 ./solver.py input

Note, this is different than the bash default time utility. It comes preinstalled on Ubuntu 20.04,

but must be explicitly referred to using the path /usr/bin/time to distinguish it from the default.

For example, $ /usr/bin/time --verbose ./solver.py akjjasdfkjhaer yields the following

results (less relevant details have been omitted, run the command if interested):

 User time (seconds): 0.18

 System time (seconds): 0.05

James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 5 of 6

 Percent of CPU this job got: 99%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.24

 Maximum resident set size (kbytes): 59276

Costs for this run on the input akjjasdfkjhaer: 0.18 seconds and 59,276 KB of memory.

Similarly, $ /usr/bin/time --verbose ./solver.py dog yields the following results (again, less

relevant details have been omitted):

 User time (seconds): 0.20

 System time (seconds): 0.02

 Percent of CPU this job got: 99%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.23

 Maximum resident set size (kbytes): 59404

Costs for this run on the input dog: 0.20 seconds and 59,404 KB of memory.

After running this benchmark 20 times (twice, for 10 different inputs of different sizes), the

following is observed:

Average size of the lookup file on disk (this does not change, in fact): 4.57 MB

Typical run: (lookup dictionaries previously generated, no extra resources spent generation)

• Average memory usage (resident set size): 59 MB

• Approximate runtime (user time): 0.2 seconds

Initial run: (lookup dictionaries unavailable, extra resources spent generating them)

• Average memory usage (resident set size): 67 MB

• Average runtime (user time): 0.6 seconds

Obviously, on a system with more/less powerful hardware, these results will vary. The

performance for casual use of the program is adequate. However, for high performance use (such

as on an optimized web service), further improvements can be made (suggested below).

Potential Improvements

Time, memory, and storage costs can be further reduced by attempting the following ideas:

• Using numpy or other high-performance libraries for containers and their processing.

(I did not want to use modules outside the Python 3 Standard Library, so I had to make sacrifices)

• Researching and implementing more efficient read/write procedures.
(In effect, this is a large contributor in terms of cost)

• Finding an adequate storage format (e.g., JSON, Pickle’s serialization format) for a good

tradeoff between storage size/compression and retrieval time/speed.

James Akl SUBANAGRAM SEARCH: ALGORITHM, IMPLEMENTATION, AND BENCHMARKING June 2022

Contact: jamesakl.com — james-akl@outlook.com Page 6 of 6

 Static Analysis & Type Annotations

Type annotations are used in the entirety of the program. In Python 3.9, type annotations of
containers and their elements can be added without importing modules. Since I used Python 3.8,
(and for the added benefit of better compatibility with older versions of Python), the module typing

has been used for annotating containers. Performing static analysis using mypy (v0.961):

Command used: $ mypy solver.py
Output: Success: no issues found in 1 source file

Mathematical Comment

The functions generate_lookup and get_results are designed with intrinsic optimizations. For

example, words form the word list are associated to their sorted strings. For instance, "state"

and "taste" have the same key "aestt". This means all anagrams are related by having the

same key, which is their common sorted strings. By doing this, there are far less keys than there
are words in the word list. Effectively, this yields large cost reductions and thus performance
boosts for obtaining the search results. The vectorization occurs over these sorted string keys as
well, meaning that anagram words are mapped to the same vector (of letter counts).

Mathematically speaking, the solution exploits the non-injectivity of the Words → Key map (since
there are several word anagrams for the same sorted key). This comes with the drastic set

cardinality reduction from the domain to the codomain: card(Words) ≫ card(Keys).

Abandoned Ideas

Improving performance using better combinatorics: failed

I experimented with improving performance using specially-designed alphabetical
permutations, rather than searching through all the keys in the aforementioned for loop

at line 94. After trying several permutations patterns using the itertools module and

deriving their complexities, I decided to abandon the idea. The complexity is high due to
combinatorial explosions. Factorial complexity with input size is a common scenario.

Handling of user input: skipped

• Providing the user with additional help and error messages.

• Skipping/exiting useless runs when the input contains numbers, whitespace, or symbols.

• I elected to skip this feature as it’s trivial to implement and not central to the challenge.

Preparing a virtual environment using venv and exporting a requirements.txt: skipped

• It’s a good practice, but since I used modules exclusively from the Python Standard
Library, the benefits of using a virtual environment are slim.

Writing unit tests using the Standard Library module unittest: skipped

• It’s a great practice, but the application and the program are small and thus can be
checked manually with little inconvenience.

• Although, for unit tests, it would have been interesting to test against special cases, e.g.:

Multiple letter appearances such as e in fever
Consecutive letter appearances such as e in free

Among others (e.g., large words, nonsensical words, maybe palindromes, …)

