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Abstract—Metal recycling in scrapyards, where workers cut
decommissioned structures using gas torches, is labor-intensive,
difficult, and dangerous. As global metal scrap recycling demands
are rising, robotics and automation technologies could play a
significant role to address this demand. However, the unstruc-
tured nature of the scrap cutting problem—due to highly variable
object shapes and environments—poses significant challenges to
integrate robotic solutions. We propose a novel collaborative
workflow for robotic metal cutting that combines worker exper-
tise with robot autonomy. In this workflow, the skilled worker
studies the scene, determines an appropriate cutting reference,
and marks it on the object with spray paint. The robot, then,
autonomously explores the surface of the object for identifying
and reconstructing the drawn reference, converts it to a cutting
trajectory, and finally executes the cut. This paper focuses on
the surface exploration and cutting reference reconstruction
tasks, which require appropriate next view planning (NVP)
algorithms. We devise three NVP algorithms enabling the robot
to explore and extract desired features from the scene, i.e., the
drawn reference, without requiring any a priori object model.
Contrasting with global or feature-agnostic NVP algorithms, our
approaches guide the robot via desired local features to increase
the efficiency of the exploration. We evaluate our NVP algorithms
against six categories of objects both in simulation and in physical
experiments.

Note to Practitioners—This work is motivated by the need of
extracting a desired cutting reference determined and drawn on
the object by scrap yard workers. From the robot’s perspective,
it must explore and reconstruct the drawing, starting from
an unknown scene containing an unknown object featuring an
unknown drawing. We assume that an RGB-D camera is attached
to the tool-tip of the robot, and the color of the drawn path
is significantly different from the object’s color. The goal of
the robotic system is to explore the object surface to uncover
the drawn path entirely without colliding with the object. The
exploration algorithm must overcome complex object shapes and
must be fast enough for practical use in scrap yards. This
means conventional exploration (active vision) techniques are
insufficient since they focus on exploring the entirety of the object,
which is unnecessary for our task and is time-consuming. Our
methods exploit the drawing information to guide the exploration
for quickly determining a suitable viewpoint, which results in
an efficient extraction of the entire cutting reference, without
needing to explore the entire object’s surface. Our algorithms
are robust against adversarial features such as discontinuous,
non-smooth, or self-occluded object surfaces. Our feature-driven
strategies are not limited to robotic scrap cutting as they are
applicable to any viewpoint planning problem requiring high
performance while extracting the local features in the scene.

Index Terms—Active vision, human-robot collaboration,
robotic cutting, metal recycling, 3-D feature reconstruction.
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Fig. 1. Shipbreaking operations break down a decommissioned vessel into
salvageable parts, further cutting them into recyclable units.

I. INTRODUCTION

SHIPPING of goods by sea plays a vital role in the global
economy. Transport vessels typically have 25–30 years of

service [1], at the end of which, they are sent to shipbreaking
yards for recycling. During this scrapping process, the vessels
are broken apart and then cut into recyclable metal components
using gas torches (see Fig. 1). The working conditions in these
shipbreaking yards are difficult and dangerous, often requiring
the disposal of hazardous substances [2]. This industry is
characterized by its labor-intensive and comparatively low-
technology activity—shipbreaking operations are not straight-
forward to mechanize or automate.

Recent years observed increases in the decommissioning
of broken, aging, or obsolete vessels. However, shipbreaking
capacity is limited [3], especially in industrialized countries
[2] due to higher labor costs. To address these rising global
scrapping demands, the recycling capacity of scrapyards needs
to be increased [4]. Robotics and automation have a potential
to enable higher throughput in shipbreaking operations and
help address the growing needs of the metal scrap industry,
while also improving the safety of scrapyard workers.

However, traditional automation approaches are not well-
suited for the diverse operations and chaotic environments of
shipbreaking yards. Specifically, automating metal cutting in
the scrapyard is difficult because of three salient challenges:

1) The inputs—i.e., the scrap pieces to be cut—have
highly-variable properties such as size, shape, material
type, surface condition, and spatial configuration.

2) The torch cutting operation itself has parameters such as
cutting speed, approach distance and angle, tip settings,
and oxy-fuel flow proportions, all of which depend on
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Fig. 2. Block representation of the system’s general workflow. This paper’s primary contribution concerns the “Exploration & Reconstruction” component.

the aforementioned input properties and are difficult to
determine.

3) The scrapyards are unstructured and have challenging
workflows and conditions.

We address the first and third challenges in determining
a desired cutting path on the target object; we do not ad-
dress the second challenge of oxy-fuel cutting control. One
outcome of this work is to provide a reference cutting path
to such a controller for oxy-fuel cutting. Thus, for each
piece’s individual properties and surrounding conditions, the
desired cutting locations must be determined, the subsequent
cutting trajectories must be generated, and the resultant cut
must be executed with the adequate cutting parameters. In
manual cutting, skilled workers can successfully determine
the suitable operation objectives, and can apply the adequate
cutting parameters—all while compensating for disturbances.
Translating all of these decision-making capacities and work-
ers’ implicit know-how into robot task parameters is highly
challenging. While there are a few studies in the literature
on robotic cutting [5]–[10], these papers focus on structured
conditions, restricted tasks, controlled environments, or known
object shapes. The development of robotic cutting systems that
address the needs of the metal scrap cutting industry is not
examined in the literature.

A. Overview of the Proposed Scheme

We propose a novel human-robot collaboration scheme
that combines the respective strengths of robots and skilled
workers. In brief, the skilled worker inspects the target piece to
determine an adequate cut. They then draw the cutting path on
the object surface using an adequate marker, e.g., spray paint.
Next, the vision-equipped robot examines the target object to
locate the drawn path. The robot explores the drawing along
the object to fully reconstruct it. With the acquired path and
object properties, cutting trajectories are generated and the
robot executes the cut.

This collaboration yields pertinent advantages:

• We leverage worker expertise that is hard to transfer to the
robot. The worker provides cutting references to the robot
by conveniently drawing them on an object’s surface.

• The work required by the robot is significantly reduced.
The robot explores only the marked regions on the
object—this avoids wasteful scanning of the entire object.

• The worker’s job is greatly simplified. The tedious and
high-risk tasks are delegated to the robot.

The proposed scheme’s components are shown in Fig. 2.

B. Paper’s Focus and Contribution

The scheme in Fig. 2 has two main tasks for the robot:
extract the cutting reference and execute the cut. This paper
focuses on exploring the target object’s surface and extracting
the 3-D drawing to generate a desired cutting path.

It is important to note that the objects and drawings are both
unknown to the robot prior to the operation, as they would
be in scrapyards. Moreover, the objects in scrapyards are
often large and complex in shape, which requires a systematic
exploration of the objects’ surface; the drawings would not be
visible from a single viewpoint of the camera and are often
times self-occluded. Therefore, the robot needs to scan the
drawing one image at a time and reconstruct it piece by piece
on a surface whose size and shape are both unknown. For
this, the robot must carefully and intelligently plan its camera’s
next poses (viewpoints). This goal requires next view planning
(NVP), i.e., determining the camera’s subsequent poses to fully
explore the object’s targeted feature. This paper builds on our
prior work [11], which outlined our human-robot collaboration
scheme and presented our first NVP algorithm for cutting path
reconstruction. While this algorithm was effective for objects
with simpler geometries, it failed against more complex shapes
by terminating prematurely. In this work, we address our prior
method’s shortcomings by adopting a next-best view strategy
repurposed from the information gain formulations [12], [13].

This paper accomplishes the following contributions:

• We propose a novel feature-driven active vision strategy
to autonomously search for and reconstruct a drawn
cutting reference on an object’s surface, both having
unknown size and shape.

• We develop two next best view (NBV) algorithms which
respectively constrain and guide the search using feature
information to select the camera’s next viewpoint.
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• We provide simulations and real robot experiments with
six different object categories to evaluate the efficiency,
flexibility, and robustness of our methods.

To the best of our knowledge, this work is the first to de-
velop solutions for robotic cutting in unstructured scrapyards;
and the first to present feature-driven active vision schemes for
efficient and robust surface exploration. Our novel algorithms
are not limited to scrap cutting but can also be applied to other
problems that require 3-D feature reconstruction.

II. RELATED WORK

This section, first, situates existing methodologies for
robotic cutting and welding against our problem’s challenges.
Next, we discuss how our approach compares to current
standards in active vision and NVP.

A. Cutting Path Generation for Robotic Cutting

As reviewed in [5], robotic cutting systems are employed
in various industrial and medical applications. While these
robots are highly diverse in their designs, objectives, and
cutting media (e.g., laser, plasma, oxy-gas, or water-jet), they
often benefit from executing explicit and well-defined tasks
in structured and controlled environments. For example, in
manufacturing applications, object properties are known and
can be directly modeled for the robot, as is the case for offline
robot programming in [6] and [7]. Similarly, [8] improves the
robot’s cutting efficiency on known airframe parts in known
locations to reduce manufacturing costs. For automated laser
cutting, analytical methods in [14]–[18] are developed for
known object geometries, while [19] improves path generation
in a known and structured scene. In gas cutting, [10] develops
a reactive control architecture for a robot to remove low-
quality metal strips from sheet metal moved on a conveyor.
Each of these uses contrasts with the operations of metal
recycling scrapyards, where objects, their surroundings, and
their cutting plans are unknown a priori. To the best of our
knowledge, the only work on robotic shipbreaking is [9],
where the focus is on applying a specialized cutting medium
(hybrid induction plasma) to submarine recycling. This system
operates only on submarine hulls, and therefore cannot handle
the more difficult cutting operations in scrapyards. These
formulations for robotic cutting are incompatible with our
target application—metal scrap recycling—since they operate
in structured environmental settings and directly on objects
with full or partial knowledge of their properties. Instead, our
algorithms explore and reconstruct an unknown drawing (cut-
ting reference) on unknown objects. Our algorithms operate in
different problem conditions, and so cannot be meaningfully
compared against the aforementioned methods. We are not
aware of any existing work on robotic cutting in unstructured
environments—except ours in [11], which this paper extends.

B. Weld Seam Extraction for Robotic Welding

While welding is a distinct operation from cutting, there
are similar subtasks required for its automation. For example,
the problem of weld seam extraction, which is covered in

[20]–[26] has apparent similarities with retrieving a desired
cutting path. Elsewhere, [27] proposes human-robot collab-
orative welding using a virtual reality setting. However, for
scrap cutting, this approach limits the robot’s task autonomy.
It is worth noting that in welding, the goal is to join materials
for the purpose of fabrication wherein there is abundant and
reliable knowledge about the input objects. In effect, some
of these seam extraction methods either assume partial or
full knowledge of the seam, or expect a viewpoint contain-
ing it entirely. By contrast, the goal in metal recycling is
to scrap or break down the objects into smaller workable
units; noting that there is a large variety of objects and a
high variance in their properties. Moreover, weld seams have
favorable properties (precise, clear, and relatively predictable)
which are often exploited to facilitate the seam extraction. In
metal scrap cutting, however, the cutting references are noisy,
irregular, and unpredictable. This is worsened by the fact that
these drawings are painted by the worker in an unstructured
setting. Moreover, scrapyard objects are often too large and
complex to guarantee that the entire drawing can be fit in one
view. For these reasons, these weld seam extraction methods
are incompatible with our problem nor can they be directly
compared with our algorithms.

C. Active Vision and Next View Planning

Active vision systems investigate the environment to gain
pertinent information by manipulating the camera’s viewpoint.
Viewpoint planning has diverse applications, among which
include precise manufacturing [28], shape reconstruction [29],
human motion capture [30], underwater exploration [31], and
robot grasping [32]–[34]. Recent developments also tackle
less conventional configurations and solutions, such as ex-
ploring articulated scenes (manipulating surroundings while
scanning) [35], scanning objects and scenes using an aerial
robot [36], and estimating occlusions via surface edge ex-
ploration [37]. Learning-oriented paradigms are also found in
NVP, most notably deep learning [38]–[40] and reinforcement
learning [41]. These approaches are not suitable for our
application since they do not exploit the relevant feature
information to enhance the NVP. Instead, we avoid wasteful
scanning of the entire object and target only its desired subsets.

Two of the algorithms proposed in this paper are probabilis-
tic NBV planners and use formulations similar to the infor-
mation gain-based methods found in [12] and [13]. In these
works, a probabilistic volumetric map is used for volumetric
scene reconstruction, where the expected information gain is
computed from discrete candidate views. We emphasize that
our NBV algorithms repurpose the aforementioned methods
in a specialized framework adapted to the domain-specific
task of robotic metal scrap scanning and cutting. While the
formulations [12] and [13] are useful for global scene explo-
ration and total object reconstruction, they are not tailored for
nor are incompatible with our target application since they
seek to map an entire object or scene and not the subset
of the object surface containing the desired feature—thereby
solving a distinct problem. In some cases, it may not even be
possible—in our problem’s formulation—to scan the object
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Fig. 3. Visual overview of the three proposed next view planning algorithm. “Extrapolated NVP” fits a curve to the feature points in the available data
and obtains the next viewpoint pose by extrapolating from this curve while estimating surface normals. “Constained NBV” converts the available data into a
volumetric occupancy grid, generates search spaces, scores every candidate viewpoint within, and then selects the candidate with the highest score. “Guided
NBV” constructs the same grid but instead generates a reduced search space thereby rapidly obtaining a next viewpoint.

entirely due to workspace constraints within which our meth-
ods operate. Accordingly, we adapt their strategies into feature-
driven planners by assisting the viewpoint search using the
desired feature’s information. To the best of our knowledge,
no existing approach targets local features on unknown objects
in unstructured scenes, a need which we address in this paper.

III. OVERVIEW OF THE SYSTEM

This section presents the different workflow components,
the robot tasks, and the hardware configuration for a contained
and structural understanding of the project.

A. Hardware Configuration

We design our algorithms assuming that the system includes
a mobile platform, a manipulator, an RGB-D camera, and a
gas torch connected to appropriate oxyfuel tanks (see Fig. 4).
Note that for scrap cutting, the fuel of choice is commonly
oxypropane. At the current stage—both in simulation and in
the physical experiments—the manipulator in use is the Franka
Emika Panda 7-DOF arm and the RGB-D camera equipped is
the Intel RealSense D435. Currently, the Panda robot is used
as stand-alone, and its integration to a mobile platform will
be addressed in our future work.

Fig. 4. Conceptual diagram of the system’s hardware configuration.

B. Workflow Components

In this collaborative workflow, the worker and robot have
well-defined roles and functions. From the robot’s perspective,
the worker provides the cutting references on the object. Af-
terwards, the robot must discover and recover these references
and then carry them out. We emphasize that the robot does not
know the locations of neither drawing nor object, nor does it
assume their shape or size. It merely assumes their existence,
and must autonomously discover and acquire any required
properties. This is essential for scrapyard environments, as
there is little regularity in shapes, sizes, and cuts.

After worker input, the robot’s tasks become: (see Fig. 2)
1) Search to discover an initial partial view of the drawing.
2) Plan next views to gradually reconstruct the full drawing.
3) Generate a 3-D cutting path from this recovered drawing.
4) Generate a cutting trajectory within known constraints.
5) Execute the cut and update it with RGB-D feedback.
The workflow can be viewed as an action sequence on the

input (colored point clouds) to the desired output (successful
cut). This is: scan (tasks #1 and #2), generate the trajectory
(tasks #3 and #4), and execute with feedback (task #5).

The main contributions of this paper solve tasks #2 (obtain-
ing the drawing) and #3 (generating a cutting path). For this
purpose, task #1 is assumed complete, i.e., we assume that a
(small) part of the drawing is visible to the robot from the
initial view.

IV. EXPLORATION & RECONSTRUCTION

This section introduces and explains the subroutines of the
exploration and reconstruction task.

A. Task Overview

Referring to Fig. 2, the exploration and reconstruction
task must facilitate the eventual generation of a cutting path.
Instrumentally, it must provide an appropriate reconstruction
of the desired feature (here, a 3-D colored drawing). This
reconstructed drawing must cover as much of the original
drawing as possible. Thus, the task’s desired output is a high-
coverage point cloud reconstruction of the drawing.

Due to the high variance of object sizes and shapes, the
robot’s initial view is unlikely to contain the entire drawing.
Accordingly, the robot keeps exploring the object until it
fully uncovers the desired feature. Thus, the exploration and
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reconstruction routine is formulated as a loop that terminates
once the drawing is considered fully explored. Until this stop
condition is met, the robot repeats the following steps:

1) Acquire a colored point cloud image.
2) Transform the acquired cloud to the fixed base frame.
3) Combine clouds from several views to reconstruct a

surface containing parts of the drawing.
4) Segment the drawing region from the reconstruction.
5) Plan the next viewpoint using the extracted points.
6) Move to the next view while avoiding collisions.
In essence, we iteratively reconstruct a subset of the object’s

surface that contains the entire drawing, and then at each step,
we use its available portion of the drawing to inform the next
viewpoint. We terminate the search once this reconstruction
is considered to contain the entire drawing, which is then
extracted. These steps are elaborated in the rest of this section.

B. Point Cloud Processing

The robot acquires colored point clouds obtained from the
variable camera frame. The surface containing the drawing is
reconstructed by combining the point clouds obtained from
multiple views. These clouds are first transformed to the fixed
base frame and are then concatenated.

More formally, let k ≥ 0 be the exploration’s current step.
Let cCk be the cloud obtained at step k with respect to the
camera frame c. The camera’s pose at step k is bTk in the
base frame b. These acquired clouds cCk are concatenated to
iteratively expand the cumulative knowledge of the drawing.

Accordingly, let bCtotal,k be the cloud containing all the
RGB-D information obtained thus far, i.e., the cumulative
cloud after step k expressed in the base frame. This can be
expressed recursively for k ≥ 1 as follows,{

bCtotal,0 = bT0
cC0,

bCtotal,k = bCtotal,k−1 ∪ bTk
cCk

(1)

The transformations bTk map all clouds acquired at differ-
ent steps k to the base frame for concatenation. The expression
bTk

cCk maps all of the cloud’s member points from the
camera frame at step k to the base frame.

The loop’s next step is to segment the drawing from the
current cumulative cloud bCtotal,k. Let ϕξ(·) be the filtering
function defined by its parameter ξ which determines its
filtering behavior. In our setup, ϕξ(·) filters by color such that
ξ is an admissible range of colors. Let bDtotal,k be the cloud
representing the drawing such that ϕξ : bCtotal,k 7−→ bDtotal,k.

With these first four subtasks defined, we summarize their
inputs, outputs, and interaction in the pseudocode below.

define ProcessClouds(step k) :
cCk ← AcquireImageAt(bTk)
bCk ← Transform(bTk,

cCk)
bCtotal,k ← Concatenate(bCtotal,k−1,

bCk)
bDtotal,k ← Filter(ξ, bCtotal,k)
return (bDtotal,k,

bCtotal,k,
bCk)

We implement some of these 3-D point cloud processing
tasks using the Point Cloud Library [42].

We note the distinction between the clouds bCtotal,k and
bDtotal,k. The cloud bCtotal,k is the local surface reconstruction
of the object, i.e., the concatenation of all the acquired and
transformed point clouds bCk at each step k. In contrast, the
cumulative feature cloud bDtotal,k is the filtered version of
bCtotal,k and thus retains only the feature points (in our case,
points of red color) with all other points discarded.

C. Next View Planning

Until now, we have defined the acquisition and processing
of point clouds at a particular viewpoint pose bTk. The initial
viewpoint at k = 0 supposedly provided by the mobile search
(see Fig. 2) is assumed given. Beyond this, we must obtain
the subsequent viewpoints to gradually explore and reconstruct
the drawing. For this, we require a next view planner.

Conceptually, the NVP algorithm performs higher-level
reasoning on the raw point clouds obtained from the
ProcessClouds(·) procedure. Specifically, the NVP generates
candidate viewpoints using information from the cumulative
feature cloud bDtotal,k, the local surface cloud bCtotal,k, and
the latest transformed cloud bCk. The pseudocode below con-
ceptually sketches the exploration and reconstruction routine.

define ReconstructDrawing() :
bT0 ← InitialViewpoint()
for k = 0, 1, . . . , kstop − 1 :

(bDtotal,k,
bCtotal,k,

bCk)← ProcessClouds(k)
bTk+1 ← NextViewpoint(bDtotal,k,

bCtotal,k,
bCk)

bDtotal,kstop ← ProcessClouds(kstop)
return bDtotal,kstop

The loop’s stopping condition is determined and checked
by the viewpoint planner, terminating the exploration at some
eventual step kstop. After termination, the cumulative cloud
bCtotal,kstop should contain the entirety of the desired fea-
ture. The final and fully reconstructed drawing’s point cloud
bDtotal,kstop is outputted for cutting trajectory generation.

Each of our three planning algorithms implement the
ReconstructDrawing() routine with their own respective
mechanism for NextViewpoint(·), i.e., planning the next
viewpoint. Irrespective of choice, the viewpoint planner con-
trols these two decisions during exploration:

1) Termination: Determine if the drawing is fully explored,
and accordingly either proceed searching or terminate.

2) Viewpoint Generation: Provide and select candidate
camera poses to continue the robot’s search.

For scrap cutting, the NVP algorithm is subject to per-
formance constraints. An inefficient planner slows down the
exploration routine, which would worsen cutting productivity.
The planning time is affected jointly by the number of steps
and by the step duration. This often comes with a trade-off, as
planners that finish with less steps tend to spend more time per
view, and by contrast planners which compute steps rapidly
tend to iterate more. This trade-off is present in our algorithms
and is later examined in our evaluations.

The NVP algorithm determines poses to visit sequentially,
throughout the exploration task, to reconstruct the drawing
on the object surface. The motion planner attempts to plan
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a feasible trajectory towards these poses and executes the
first viable one. This motion then executes while avoiding
collisions. For our implementation, we use ROS [43] and
Gazebo [44]. We also use MoveIt! [45] for motion planning,
which is internally set to use OMPL and TRAC-IK.

V. NEXT VIEW PLANNING ALGORITHMS

This section develops the three feature-driven NVP algo-
rithms. Each algorithm:

• Obtains a point clouds of the object that is marked with
the cutting path.

• Segments the points that belong to the cutting path.
• Processes the object point cloud and the cutting path point

cloud to calculate the next viewpoint.
• Moves the robot to the next viewpoint, and repeats this

process until a termination condition is reached.
The algorithms can be distinguished (see Fig. 3) by how

each of these three high-level actions is accomplished.
The first algorithm generalizes the procedure for point cloud

fitting and curve extrapolation, from our prior work [11]. To
the best of the authors’ knowledge, this method is the first of
its kind to address the application of interest: reconstructing
an unknown drawing on an unknown surface, given a known
feature (here, the color red). As such, this algorithm is used
as a baseline against which the remaining two are compared.

The second algorithm reformulates the methodologies
in [12] and in [13] into one that is adapted for the appli-
cation of interest. Briefly, the method relies on a probabilistic
occupancy voxel grid and a quality metric (based on informa-
tion gain) to explore and rank candidate viewpoints, thereby
selecting that which maximizes quality. This planner searches
the grid in a rather exhaustive manner. In contrast, our third
algorithm, which uses the same formulation as the second,
exploits greedy-like optimizations for faster searching.

We examine each method in its respective subsection.

A. Extrapolated Next View Planning (E-NVP) Algorithm

This first planner treats the feature NVP task like a path
exploration problem—by iteratively exploring the branches of
an unknown path until all endpoints are found. The point
clouds are converted to more useful and more structured rep-
resentations using fitting methods. The next view is obtained
by extrapolating those fits.

Exploring along a path requires a sense of its direction.
However, the data obtained from the stereocamera, which is
then processed in the procedure ProcessClouds(·), remains
in the format of point clouds. Essentially, this is an unordered
list of 3-D colored points where the direction of the drawing
cannot be directly inferred. In this form, viewpoint planning
on the desired feature is not straightforward.

This planner solves this representation problem by mapping
the point cloud to a more usable structure. The cloud data is
used to construct or fit spatial curves parametrized in 1-D.
This procedure is captured by the map R6

xyzRGB → R × R3
xyz

where the input space R6
xyzRGB represents the point cloud. The

output space (a curve) can equivalently be rewritten as a rule

R → R3
xyz, which takes a 1-D parameter and returns a 3-D

point. The cloud is thus reduced to a curve as follows,

{(
bpx,

bpy,
bpz, pR, pG, pB

)
j

}
j=1

Fit7−→
(
bqxyz(t)

)
t

(2)

This 1-D ordering of 3-D points yields a sense of direction
along the curve wherein there is an ordering on the curve
points. Specifically, the set of unordered points {bpj}j=1 is
used to create the list of ordered points

(
bqxyz(t)

)
t

indexed
by the parameter t. This provides the planner with a way
to determine the next viewpoint to continue exploring the
drawing. Since the curve represents one continuous and known
portion of the drawing, the drawing’s unknown regions come
after the endpoint of this curve. This planner assumes that the
entire drawing has two extremities, meaning it is branchless.
Thus, after the initial viewpoint, there are two scenarios for
curve endpoint selection. If the initial viewpoint happened to
already contain one extremity of the drawing, then the planner
explores in the direction of the second curve endpoint. On the
other hand, if the initial view contains an intermediate portion
of the drawing, then the planner has two candidate directions
to explore. The curve endpoint closest to the camera is chosen
to reduce movement time between unexplored endpoints.

With a chosen curve endpoint, the planner extrapolates to
the next viewpoint at each step at a configurable distance
δdistance. When δdistance = 0, the extrapolated endpoint itself
becomes the next viewpoint. Exploring one curve endpoint
at a time is slower, but plans towards the drawing extremity
more conservatively. Alternatively, δdistance > 0 places the next
viewpoint, beyond the curve endpoint. This speeds up explo-
ration but may cause some overshoot. Accordingly, keeping
the extrapolation distance small is preferable.

Extrapolation only determines the position bdk+1 of the
next viewpoint. To fully provide the next pose bTk+1, the
planner must also determine the next orientation bRk+1 of
the camera at that position bdk+1. The planner sets the
orientation to be orthogonal to the surface at the viewpoint
position bdk+1. This orientation is obtained by estimating
the vector normal to the surface surrounding the viewpoint
position bdk+1. This region is contained in the cumulative
cloud bCtotal,k. Orienting the camera orthogonally helps the
robot obtain a more accurate capture of the surface and
thus avoid leaving gaps in the drawing point cloud during
exploration—which would otherwise require backtracking and
cost additional time. The orientation about the normal does not
affect output significantly, and is relaxed for motion planning.

This planner continues searching by iteratively obtaining
new clouds, fitting a curve on the desired feature, and ex-
trapolating towards the next viewpoint. The planner considers
a drawing extremity to be found when the size difference
between two consecutive reconstructions bDtotal,k falls below
a threshold δsize. After both extremities are found, the search
terminates and returns the reconstruction bDtotal,kstop . This
iterative extrapolation procedure is outlined in Algorithm 1,
where the result is the feature’s reconstruction.

Note that this procedure is affected by the fitting method
choice. In our prior work [11], we examined and compared
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TABLE I
FEATURE CATEGORIES AND TEST OBJECTS FOR THE SIMULATION AND THE PHYSICAL EXPERIMENTS
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Smooth Cylinder
Smooth surface

Category 2
Sharp Cylinder

Sharp occlusion
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Round Tank

Smooth occlusion
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Sharp transition
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I-Beam

Nonsmooth surface

Category 6
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Discontinuous surface
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n
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the effects and results of two types of fitting methods. The
first fitting method relies on an optimization scheme to fit a
non-uniform rational B-spline (NURBS) curve to the cloud.
This method initializes a proposed curve and then improves
the fit using point-distance minimization. An alternative fitting
method from computational geometry is topological skele-
tonization. The goal of a skeletonization algorithm is to
compute the medial axis of a shape—defined as the set of
points equidistant from its boundary. This discretizes the
shape into a voxel grid, and then erodes its edges away
by repeatedly applying a thinning algorithm, until a single
voxel-wide skeleton remains. This method runs faster than the
NURBS-based method, and is used in our evaluations.

Algorithm 1: Extrapolated Next View Planner (E-NVP)

Input : Initial view containing part of the drawing.
Output: bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, extremities found, and viewpoint.
step k ← 0
nextremities ← 0
bT0 ← InitialViewpoint()

Explore the drawing until two extremities are found.
while nextremities < 2 do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k,

bCk)← ProcessClouds(k)
Backtrack to initial view if drawing size unchanged.
if size(bDtotal,k)− size(bDtotal,k−1) ≤ δsize then

nextremities ← nextremities + 1
bTk+1 ← InitialViewpoint()

else
Fit a curve on the cumulative drawing’s cloud.
Curve← Fit(bDtotal,k, FittingMethod)

Obtain next view pose from fit’s extrapolation.
bdk+1 ← Extrapolate(Curve, δdistance)
bRk+1 ← GetNormalVec(bdk+1,

bCtotal,k)
bTk+1 ← (bdk+1,

bRk+1)

k ← k + 1

return bDtotal,kstop

B. Constrained Next Best View (C-NBV) Algorithm

This planner restructures the NVP task into a search prob-
lem on a voxel grid. In brief, this grid is constructed from
the point clouds and updated at each measurement. A frontier
region is computed to constrain and generate the candidate
search space, within which each candidate is scored with a
viewpoint quality metric. The best candidate is selected as the
next view. This repeats until a termination criterion is met.

The algorithm voxelizes the obtained processed clouds into
an octree grid of occupancy probabilities. The grid distin-
guishes between occupied, unoccupied, and unknown cells
based on their occupancy probabilities—respectively more
than, less than, and equal to 0.5. We use OctoMap [46] as a
probabilistic voxel occupancy grid. This grid allows efficient
storage and querying of cell probabilities.

Let Gk be the voxel grid generated at step k. The local
scene’s cumulative cloud bCtotal,k is voxelized to map the
currently available knowledge, while the reconstructed draw-
ing’s cumulative cloud bDtotal,k is used to identify those voxels
belonging to the drawing. Since the drawing is the region of
interest, we determine its frontier on the grid. Here we define
a frontier cell to have at least one unknown neighbor and at
least another neighbor belonging to the drawing’s region. The
frontier at step k is denoted by Fk and represents the boundary
of current knowledge about the drawing used to determine
high-vantage locations for generating viewpoint search spaces.
This constrains the search at step k for the next view in search
space Sk where candidate viewpoints are scored and ranked.
The space is constructed by generating regions from geometric
primitives (e.g., cubes, spheres) around each frontier cell, and
then concatenating them such that Sk =

⋃
f∈Fk

S(f) where
S(·) generates a search space primitive for a single cell.

The camera’s viewpoint sk can be expressed in the base
frame as bsk = (bx, by, bz, αx, αy, αz), where (bx, by, bz)
is the position in the grid, and (αx, αy, αz) is the orien-
tation obtained as anticlockwise rotations about the respec-
tive axes. It can also be expressed in the camera frame as
csk = (cx, cy, cz, αR, αP, αY) where (cx, cy, cz) is the position
with respect to the camera’s frame, and (αR, αP, αY) is the
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orientation specified with respect to the local roll-pitch-yaw
frame (R̂, P̂, Ŷ) about the camera’s body (see Fig. 5). The
transformations from csk to bsk relate these expressions.

Fig. 5. Specification of the camera frame (R̂, P̂, Ŷ) for orientation. R̂ is
normal to the lens extending from the front. P̂ extends horizontally from left
to right on the camera’s front body. Ŷ is obtained binormally to the rest.

All candidates in Sk are scored using a viewpoint quality
metric Q(·). The next view is set to the best-scoring candidate,

bTk+1 = argmax
s∈Sk

Q(s) (3)

We note that bsk represents the candidate viewpoints s in the
base frame at step k of which the highest-scoring candidate
s∗ = argmaxs∈Sk

Q(s) becomes the chosen next viewpoint
bTk+1 to which the robot moves from steps k to k + 1.

The quality of an candidate viewpoint at step k is given by,

Q(sk) = λ · gain(sk)∑
s∈Sk

gain(s)
− (1− λ) · cost(sk)∑

s∈Sk

cost(s)
(4)

This is a convex combination of a gain term and a cost
term, expressed as a proportion of their search space totals.
The parameter λ ∈ [0, 1) determines, for a particular view-
point, the relative weight between its gain and cost terms
gain(sk)/

∑
s∈Sk

gain(s) and cost(sk)/
∑

s∈Sk
cost(s), ex-

pressed as fractions of the candidate population totals—that
is, the aggregate values for every s ∈ Sk. Here, gain(sk)
quantifies the relevant information gain obtained from choos-
ing sk as the next viewpoint. The function cost(sk) offsets
this gain and is the Euclidean distance between the current
viewpoint and the candidate sk. This penalizes the quality of
a viewpoint on distance from the current position. Therefore,
a smaller value for λ prioritizes the highest-ranking viewpoint
candidates which are also near the current position.

Hence, the parameter λ directly affects the distance traveled
within a measurement step and thus the exploration time.
However, λ does not affect the NBV algorithms’ coverage
performance in terms of feature reconstruction. In practice,
for highly constrained spaces, it is preferable that the robot
explores in short bursts, thus favoring a reduced value for
λ. Conversely, for highly spacious conditions, the distance
constraints can be relaxed, allowing the robot to move to
viewpoints further away, which in turn favors an increased
value for λ. In our evaluations, the parameter is set to λ = 1

2 to

give equal weight to the gain and cost terms, as the evaluation’s
focus is to assess the feature reconstruction capability. With
that said, the parameter λ can be readjusted to application-
specific and case-specific needs, if necessary.

The gain(·) function is obtained by summing over the grid,

gain(sk) =
∑
g∈Gk

[
h(g | sk) · pϕ(g) · pv(g | sk)

]
(5)

Here, h(g | sk) is the information entropy decrease which
measures absolute information gain at a cell g after placing the
next viewpoint at sk. The feature probability pϕ(g) estimates
the feature membership of the cell g, i.e., the chances of
belonging to the drawing. The visibility probability pv(g | sk)
estimates the chance that the cell g is visible from sk.
The probabilities pϕ(g) and pv(g | sk) respectively penalize
distance from the desired feature (the drawing) and occlusion.

The entropy decrease h(g | sk) is obtained through the
entropy function H(·) used in information theory, as follows,

h(g | sk) = H (og | sk−1)−H(og | sk) (6)

The binary occupancy random variable og models whether
the cell g is unoccupied (og = 0) or occupied (og = 1).
The information entropy H(og | sk) quantifies the uncertainty
of the binary random variable og denoting the occupancy of
cell g. When this information entropy decreases across two
consecutive measurements, i.e., when h(g | sk) > 0, then we
have “lost some uncertainty” or “gained information” about the
occupancy state of the grid cell g, after the kth measurement
from cell sk. This procedure is illustrated as shown in Fig 6.

Fig. 6. The absolute information gained (about the occupancy state at a cell
g) by moving from the viewpoint sk−1 to the viewpoint sk corresponds to
the decrease in information entropy about its occupancy state.

The feature probability is modeled with exponential decay,

pϕ(g) = P [ϕg = 1] = exp
[
−αϕ distFk

(g)2
]

(7)

The feature indicator random variable ϕg models whether the
cell g belongs to the drawing (ϕg = 1) or otherwise (ϕg = 0).
The function distFk

(·) returns the shortest Euclidean distance
from g to the nearest frontier cell in Fk. The parameter αϕ > 0
is used to tune the exponential decay profile. Maximizing
only the absolute information gain between two consecutive
viewpoints would lead to seeking novel information about the
state of the grid regardless of its relevance to the desired
feature. Therefore, new information gained about each cell
must also be scaled by the cell’s probability of belonging to
the desired feature. This feature probability pϕ is approximated
using the assumption that cells near the desired feature have a
higher probability of belonging to the feature. This assumption
is modeled using an exponential decay profile applied onto
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the distance to the nearest frontier cell. We illustrate this
computation as shown in Fig. 7.

Fig. 7. The feature probability approximates the probability that a grid cell
g belongs to the desired feature. The frontier cells in this case represent the
cells that have been determined to be part of the desired feature.

The visibility probability at cell g from candidate sk is,

pv(g | sk) = P [vg,sk = 1] =
∏

r∈Rk

P [or = 0] (8)

The binary visibility random variable vg,sk models whether
the cell g is visible (vg,sk = 1) or otherwise (vg,sk = 0) from
the candidate sk. An unobstructed view to the cell g from a
candidate sk must be must preferred. Raycasting is performed
from sk to g, where Rk contains all cells traversed by the ray.
The probabilities that the ray cells are unoccluded P [or = 0]
are multiplied to yield pv(g | sk), i.e., the probability that the
cell g is visible from the candidate viewpoint sk. The above
procedure is illustrated as shown in Fig. 8.

Fig. 8. The visibility probability of a cell g from the candidate viewpoint
sk is computed as the probability pv that all their intermediate cells are
unoccupied.

During the search, all grid positions (bx, by, bz) within Sk
are attempted for scoring. For each candidate position, the
orientation is searched by varying the angles αP and αY. The
C-NBV planner relaxes the angle αR to not overly constrain
the motion planner, since the normal direction about the lens
has a comparably lesser effect on the information gain in the
acquired image. After determining the next viewpoint s∗k, the
camera’s grid position (x, y, z) and orientation αP and αY are
set accordingly. The angle αR is determined by the motion
planner, and the camera is moved to its new pose.

With the quality metric Q(·) fully defined, a next viewpoint
can be obtained, and the procedure elaborated above repeats
until the following stop condition is met:[

maxs∈Sk
Q (s) < δQ

]
∨
[
card(Fk) = 0

]
(9)

That is, the routine stops once the optimal viewpoint quality
falls below a certain threshold δQ, or when the number of

frontier cells reaches zero, whichever condition is met first .
This procedure is outlined in Algorithm 2.

This formulation is based on the object reconstruction
algorithm developed in [12] as well as the information gain
approach in [13]. However, these formulations are not well-
adapted to our problem, and are either impractical (search
spaces are too large and NBV selection is too slow) or
infeasible (scrap objects are often too large to fully scan).

As presented above, we implement several modifications to
reformulate these approaches for our requirements. We modify
the frontier definition to focus on the desired feature. We also
generate constrained search spaces around specific frontier
cells to vastly decrease the search’s time and memory costs.
To determine the NBV’s orientation, we constrain its range by
pointing the camera at the frontier cells.

Algorithm 2: Constrained Next Best View (C-NBV)

Input : Initial view containing part of the drawing.
Output: bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, stopping condition, and viewpoint.
step k ← 0
stop← False
bT0 ← InitialViewpoint()

Search the grid until viewpoint quality is exhausted.
while stop ≡ False do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k,

bCtotal,k)← ProcessClouds(k)
Generate octree grid from cumulative clouds.
Gk ← GenerateGrid(bCtotal,k,

bDtotal,k)
Determine and filter the frontier cells in the grid.
Fk ← GetFrontier(Gk)

Generate viewpoint search space around frontier.
Sk ←

⋃
f∈Fk

S(f)
Obtain next viewpoint with highest quality.

bTk+1 ← argmaxs∈Sk
Q (s)

Evaluate and update the stopping condition.
stop← maxs∈Sk

Q (s) < δQ or card(Fk) = 0
k ← k + 1

return bDtotal,kstop

C. Guided Next Best View (G-NBV) Algorithm

This planner implements specialized modifications to the
previous algorithm to radically increase performance. It does
this by not only constraining the search, but also explicitly
guiding it along the feature. The planner thus uses feature
information to perform greedy optimizations.

Unlike the E-NVP planner, this algorithm does not assume
that it explores a path. However, by guiding its search along
the feature, it retains the performance advantages of path
exploration. Yet, its probabilistic NBV formulation is more
robust against unknown space, occlusions, and adversarial
geometries. In a sense, this carries the performance advantages
of the path exploration paradigm and the robustness charac-
teristics of the probabilistic NBV formulation.

We repeat the formulation of the C-NBV algorithm until
after the frontier Fk is determined. Despite the large per-
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formance improvements of the already reduced frontier, the
search space can still become being quite large. Consider
the scenario of a large object with a drawing traversing long
parts of its surface. This produces a long frontier with little
overlap between the individual search spaces S(·), causing the
concatenated search space Sk to significantly grow.

To address this, the G-NBV planner reduces the frontier
Fk into a single frontier cell f̂k. For this, the frontier cells
are clustered using a suitable voxel clustering method. We
use a connectedness-based clustering method, whereby any
neighboring frontier cells are lumped into the same cluster.
Now, the frontier is composed of several clusters, of which
the nearest one (to the current pose) is chosen. The centroid
f̂k of this nearest cluster is computed and then used as the
single-voxel frontier for generating the search space.

This offers numerous performance advantages. First, by
trimming the other clusters, the planner explores any number
of branches, one at a time, avoiding long and exhaustive
searches. Second, since there is only one frontier cell, then
the entire search space consists of a single geometric primitive
around the cell, e.g., a sphere around the centroid. This is a
reasonable step, as frontier cells tend to surround the current
reconstructed drawing’s endpoints. Thus, searching around this
centroid would implicitly guide the planner along the drawing.

A third advantage lies in determining orientations for the
candidate viewpoints. This is normally expensive as it drasti-
cally increases the search space, since for every position there
are several the camera orientations. We eliminate this problem
entirely by constraining the orientation from the candidate cell
s to the frontier centroid f̂k, thus predetermining the values
for the angles αP and αY. This reduces G-NBV’s search to
only the grid positions, since αP and αY are predetermined
and αR is delegated to the motion planner. The search space
is thus not only reduced cell-wise, i.e., attempt only the search
space around f̂k rather than around the entire frontier, but also
pose-wise, i.e., search only grid positions in the search space
while constraining the camera orientation.

This constraint is justified due to the localized information
on the drawing. In effect, high viewpoint qualities concentrate
in the unknown space around the current reconstructed draw-
ing’s endpoints. Fixing the orientation towards the centroid
eliminates the exploration of alternatives where the gain is of-
ten marginal or negative. By exploiting the drawing’s structure,
the planner is able to rapidly select the next viewpoint.

The G-NBV routine is summarized in Algorithm 3.

D. Cutting Path Generation

By using any of the three aforementioned algorithms, we
obtain the fully-reconstructed cloud of the drawing. This
cloud is used to generate a suitable cutting path (along the
drawing) that can eventually be used as a reference for cutting
control. We accomplish this task of converting unstructured
point clouds to ordered paths, as in the mapping (2), by
using suitable curve fitting methods. This is the same class
of methods used in the Extrapolated NVP’s curve fitting step.
In effect, either of the corresponding methods (NURBS-based
point-distance minimization, or topological skeletonization) as

Algorithm 3: Guided Next Best View (G-NBV)

Input : Initial view containing part of the drawing.
Output: bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, stopping condition, and viewpoint.
step k ← 0
stop← False
bT0 ← InitialViewpoint()

Search the grid until viewpoint quality is exhausted.
while stop ≡ False do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k,

bCtotal,k)← ProcessClouds(k)
Generate octree grid from cumulative clouds.
Gk ← GenerateGrid(bCtotal,k,

bDtotal,k)
Determine and filter the frontier cells in the grid.
Fk ← GetFrontier(Gk)

Reduce the frontier set into a single frontier cell.
Fk ← GetClusters(Fk, ClusteringMethod)
Fk ← GetNearestCluster(Fk)
f̂k ← GetClusterCentroid(Fk)

Generate viewpoint search space around centroid.
Sk ← S(f̂k)

Obtain next viewpoint with orientation constraint.
bTk+1 ← argmax

s∈Sk

Q (s) s.t.bRk+1 = Rot(s, f̂k)

Evaluate and update the stopping condition.
stop← maxs∈Sk

Q (s) < δQ or card(Fk) = 0
k ← k + 1

return bDtotal,kstop

explained in subsection V-A is suitable for obtaining a cutting
path from the fully-reconstructed drawing.

VI. SIMULATIONS & PHYSICAL EXPERIMENTS

This section details the approaches taken to evaluate and
compare our NVP algorithms in simulation and in the physical
experiments. Additionally, it defines the benchmarking metrics
and ground truths used for performance quantification.

A. Design of Realistic Simulation

The simulation is configured to mimic realistic conditions
and outcomes. In effect, the simulation’s camera model repli-
cates the sensing properties of the D435 stereocamera used in
the experiment, e.g., image size, and sensory noise modeled
after the D435’s noise distribution found in its datasheet [47].

For a realistic evaluation of the NVP algorithms, the test
objects must carry adversarial features commonly found in
the scrapyard. We select six feature categories or challenges
with which we evaluate our planners. These are:

1) Smooth surface without occlusion
2) Sharp occlusion between smooth surfaces
3) Smooth occlusion along a smooth surface
4) Sharp transition between smooth surfaces
5) Highly nonsmooth surface with occlusions
6) Highly discontinuous surface
For this, we acquire high-detail 3-D scans of actual metal

scrap pieces (see Table I) adequately selected and retrieved
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TABLE II
SIMULATION RESULTS: EVALUATING BENCHMARKING METRICS FOR EACH NVP ALGORITHM ON ALL OBJECT CATEGORIES

Challenge
(category)

Planner
(algorithm)

Viewpoints
(steps)

Total Duration
(sec)

Avg. Step Duration
(sec/step)

Total Displacement
(cm)

Coverage
(voxels)

Coverage
(%)

Smooth Cylinder
Category 1

Extrapolated NVP 9 61.9 6.9 144.6 197/199 99.0
Constrained NBV 4 808.0 202.0 48.5 197/199 99.0
Guided NBV 4 38.6 9.6 67.8 197/199 99.0

Sharp Cylinder
Category 2

Extrapolated NVP 8 43.4 5.4 88.3 372/569 65.4
Constrained NBV 4 417.5 104.4 87.7 569/569 100
Guided NBV 3 43.4 14.5 66.0 568/569 99.8

Round Tank
Category 3

Extrapolated NVP 6 30.1 5.0 149.5 82/82 100
Constrained NBV 3 153.3 51.1 81.8 82/82 100
Guided NBV 3 41.6 13.9 68.1 82/82 100

T-Piece
Category 4

Extrapolated NVP 4 18.0 4.5 81.7 179/182 98.4
Constrained NBV 4 463.5 115.9 88.7 179/182 98.4
Guided NBV 3 47.0 15.7 53.7 177/182 97.25

I-Beam
Category 5

Extrapolated NVP 6 29.0 4.8 90.0 234/532 44.0
Constrained NBV 5 549.0 109.8 108.4 525/532 98.7
Guided NBV 3 56.4 18.8 10.5 501/532 94.2

Basket
Category 6

Extrapolated NVP 8 46.0 5.7 94.1 153/155 98.7
Constrained NBV 2 187.7 93.8 11.82 130/155 83.9
Guided NBV 2 50.6 25.3 23.9 145/155 93.5

Note: The Extrapolated NVP planner backtracks to the initial point after finding the first endpoint. As a result, it records an additional step: the revisited viewpoint.

TABLE III
VISUALIZING VIEWPOINTS, DISPLACEMENT, AND COVERAGE FOR EACH NVP AGAINST FOUR SIMULATED OBJECTS

Algorithm 1: E-NVP Algorithm 2: C-NBV Algorithm 3: G-NBV
Viewpoints Coverage Viewpoints Coverage Viewpoints Coverage
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The magenta graph shows the displacement between views while the green rays show their poses. For coverage, recovered voxels are in green while missed ones are in red.

from our industrial collaborator’s shipbreaking yard. We add
two reference objects (cylinders) to examine the robustness of
each algorithm against a simple sharp self-occlusion.

B. Setup of Physical Experiment

The evaluation steps are standardized and replicated in both
the simulated and experimental environments. For this, both
environments are configured to reduce discrepancies between
their conditions. The same red color for the drawing is
used on both the simulation objects and the physical objects.
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TABLE IV
EXPERIMENTAL RESULTS: EVALUATING BENCHMARKING METRICS FOR EACH NVP ALGORITHM ON ALL OBJECT CATEGORIES

Challenge
(category)

Planner
(algorithm)

Viewpoints
(steps)

Total Duration
(sec)

Avg. Step Duration
(sec/step)

Total Displacement
(cm)

Coverage
(voxels)

Coverage
(%)

Smooth Cylinder
Category 1

Extrapolated NVP 8 24.3 3.0 119.5 265/270 98.1
Constrained NBV 1 31.4 31.4 21.7 268/270 99.3
Guided NBV 1 18.7 18.7 22.3 267/270 98.9

Sharp Cylinder
Category 2

Extrapolated NVP 5 19.4 3.9 51.9 144/167 86.2
Constrained NBV 3 561.2 187.1 93.7 162/167 97.0
Guided NBV 2 68.1 34.1 62.0 165/167 98.8

Round Tank
Category 3

Extrapolated NVP 4 13.1 3.3 67.3 324/329 98.5
Constrained NBV 3 252.4 84.1 89.4 320/329 97.3
Guided NBV 3 106.2 35.4 63.8 314/329 95.4

T-Piece
Category 4

Extrapolated NVP 5 25.0 5.0 29.5 109/111 98.2
Constrained NBV 2 178.5 89.3 44.7 110/111 99.1
Guided NBV 1 28.4 28.4 38.7 111/111 100

I-Beam
Category 5

Extrapolated NVP 1 9.6 9.6 28.1 92/425 21.6
Constrained NBV 6 1015.8 169.3 122.9 410/425 96.5
Guided NBV 7 153.3 21.9 167.7 407/425 95.8

Basket
Category 6

Extrapolated NVP 4 6.8 1.7 32.3 117/171 68.4
Constrained NBV 4 358.4 89.6 105.3 163/171 95.3
Guided NBV 3 112.0 37.4 91.2 166/171 97.1

Note: The Extrapolated NVP planner backtracks to the initial point after finding the first endpoint. As a result, it records an additional step: the revisited viewpoint.

TABLE V
EXPERIMENTAL OUTPUT: RECONSTRUCTIONS USING THE GUIDED NBV PLANNER AND CORRESPONDING GENERATED CUTTING PATHS
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es Category 1

Smooth Cylinder
Smooth surface

Category 2
Sharp Cylinder

Sharp occlusion

Category 3
Round Tank

Smooth occlusion

Category 4
T-Piece

Sharp transition

Category 5
I-Beam

Nonsmooth surface

Category 6
Basket

Discontinuous surface
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Furthermore, the camera settings and the ambient lighting are
kept consistent and maintained throughout the experiments. In
addition, the planners are evaluated and tuned fairly. All plan-
ners share the same filter ξ, E-NVP uses δdistance = 1 voxel,
and both NBV planners share the parameters (λ = 1

2 , αϕ = 5).

More importantly, the physical test objects are direct feature
analogs of the simulated ones as shown in Table I. This means
that the NVP algorithms evaluated in either the simulations
or the experiments face the same types of challenges in
each feature category. For these reasons, the simulation and
experimental results may be used collectively to reliably draw
conclusions on the performance of the NVP algorithms.

Note that for both evaluations, the objects were fixed and

evaluated one at a time. That is, for each object we first obtain
a ground truth of the drawing using the method at the end of
this section. Afterwards, the three NVP algorithms are run
sequentially and all their results are collected in the same
frame without moving the tested object. We repeat these four
procedures with every object until completion.

C. Benchmarking Metrics

The following metrics are chosen to assess and quantify the
efficiency and robustness of our viewpoint planners.

1) Number of Viewpoints: This counts the number of it-
erations in the exploration routine, which corresponds to the
number of viewpoints visited until termination. This excludes
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the initial viewpoint, since it is an input to the exploration
task used to generate the first round of viewpoint candidates.
For instance, nviewpoints = 1 means the robot moved to
one viewpoint from the initial pose, reached the stopping
condition, and then terminated the search.

This metric helps compare the number of steps taken by
each NVP algorithm until termination.

2) Total Duration: In our evaluations, we measure only
the viewpoint planning time and exclude motion planning and
execution times as these are external processes. In other words,
we partition the total exploration time into NVP processing
time and motion-related time. Let ∆t be this next view
planning time which we call “Total Duration” in Tables II
and IV. In our evaluations, this is computed as follows,

∆t = ∆texploration −∆tmotion (10)

This metric allows us to directly compare the processing
duration spent by each NVP algorithm from the start of the
exploration task until termination.

3) Average Step Duration: It is desirable to assess and
compare the average processing time per iteration ∆t taken
by each NVP algorithm for a particular scenario. This is
computed using the previous two metrics, as follows,

∆t = ∆t/nviewpoints (11)

This allows us to more easily perceive the trade-off between
number of steps and step duration across each algorithm.

4) Total Displacement: We measure the spatial configura-
tion of the chosen viewpoints independent of the robot’s mo-
tion plan, by summing the displacement magnitudes between
viewpoints. Specifically, let (pk)

nviewpoints

k=0 be the sequence of
viewpoint positions, indexed in the order they were visited.
This includes the initial viewpoint, since we sum the magni-
tudes between viewpoints. The total displacement dtotal is,

dtotal =

nviewpoints∑
k=1

∥pk − pk−1∥2 , (12)

This allows us to compare the transient behavior of each
algorithm, alongside the magenta polygonal chain connecting
all visited viewpoints in Table V.

5) Coverage: We use point cloud coverage as a measure of
correctness for the reconstructed drawings resulting from the
use of each NVP algorithm. For our evaluations, we define the
coverage of a cloud bC over a ground truth cloud bG as,

coverageG(
bC) =

card
[
vox(bC) ∩ vox(bG)

]
card

[
vox(bG)

] (13)

Here vox(·) voxelizes the clouds in a common and precise
grid to determine their overlap, and card(·) is the cardinality
which returns the number of voxels. The cloud bG represents
the ground truth to which bC is compared and over which
coverage is obtained. We emphasize that both clouds must be
expressed with respect to a common base frame b.

In our evaluations, bC is the final reconstructed drawing
bDtotal,kstop and bG is accepted to represent the actual drawing
in point cloud form. We discuss the method used to generate

bG in the next subsection. We report coverage results in Tables
II and IV in two formats. The first shows the number of voxels
in the ground truth cloud, while the second is a percentage.

D. Ground Truth Generation

For the purposes of coverage calculation, the ground truth
cloud bG ideally represents a perfect reconstruction of the
drawing in the form of a point cloud. We must obtain a
good approximation for this ideal within the limitations of our
stereocamera. For this, we must scan the object’s local region
which contains the drawing. The NVP algorithms are meant
to automate this procedure of picking viewpoints. However, to
improve the ground truth, we manually pick good viewpoints
for the robot. The robot stays in place at each viewpoint to scan
the same region repeatedly. The obtained images are averaged
until the discrepancy between iterates of this average cloud
falls below a preset threshold. This threshold is expressed as
a proportion of the occupancy grid’s voxel size. This procedure
is briefly sketched in the following pseudocode.

define GenerateGroundTruth() :
Initialize ground truth cloud bG
while UserInput() :

Move the robot to the next viewpoint
Initialize cumulative moving average (CMA)
while Error < Threshold :

Acquire image point cloud
Update CMA for this viewpoint
Update error between last two CMAs

Concatenate latest CMA with bG
return bG

We use this user-assisted procedure in both simulations and
experiments to generate near-optimal drawing reconstructions
for each test case within the sensory limitations of the stereo-
camera. This reconstruction has very little noise and can serve
as a ground truth for coverage calculations.

VII. RESULTS

In this section, we present and discuss the results obtained
from the evaluations in simulations and experiments.

We tabulate our results for the aforementioned benchmark-
ing metrics in Table II for the simulations and Table IV
for the experiments. In addition, in Table III we visualize
for each planner, some of its simulation results: viewpoint
displacement, poses, and output cloud coverages. Finally, in
Table V we display the experimental output of our exploration
and reconstruction task (using G-NBV for planning) against
each physical test object. We show the full reconstruction of
the desired feature to demonstrate the effectiveness of our
feature-based NVP paradigms in a real-world scenario.

We discuss the significance of our results and the nuances
between our planners in the following subsections.

A. Exploration Efficiency

The planners exhibit different transient properties while
exploring each object category. In general, we observe that the
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E-NVP average step duration is shorter—fitting and extrapo-
lation is relatively quick—yet the planner often requires more
iterations to fully explore the feature. In contrast, the NBV
planners finish in less views but often take more processing
time per step to search their grids.

For E-NVP, the average step durations are fairly consistent
during successful runs across object categories. This means
that the E-NVP total duration is largely affected by the number
of steps in the exploration routine. This implies that its total
duration is grows with the feature’s size on the object: longer
drawings on larger objects require more steps to be fully
explored and thus increase total duration. This is observed
for object category 1 which features the longest drawing. This
sensitivity to feature size is expected, since E-NVP typically
gains less information per step when compared to the NBV
planners. Both the C-NBV and the G-NBV planners are less
affected by feature size (meaning number of steps) and more
by the total grid size (meaning average step duration) and by
the scene’s complexity (e.g., in categories 2, 5, and 6).

The total displacements and viewpoint poses reveal that E-
NVP plans in a more conservative and predictable manner and
can be seen to move along the drawing. By contrast, the NBV
planners tend to pick views with much larger information gain
without much consideration for their positions.

In terms of total duration, the G-NBV planner is shown to
be up to around ten times faster than the C-NBV, especially in
large scenes requiring a larger grid. This is expected since C-
NBV’s frontier definition and search space generation make
it much more sensitive to grid size. Even with its feature-
based constraints, the C-NBV planner is the slowest in every
category. This further justifies the greedy and aggressive
constraints used by G-NBV to speed up exploration.

B. Robustness against Adversarial Features
Adversarial features such as occlusions, nonsmoothness,

and discontinuities affect the reconstruction effectiveness of
each planner differently. In the absence of adversarial features
(category 1) all methods perform quite well. Even with smooth
occlusions (category 3) and unoccluded sharp transitions (cat-
egory 4), coverage scores are almost perfect for all planners,
and the drawing is fully reconstructed.

However, we observe coverage degradation in certain sce-
narios. E-NVP fails to fully reconstruct the drawing against
sharp occlusions (category 2). The coverage score of 86.2% on
category 2 in the experimental results is not to be interpreted
as high, since it missed the portion of the drawing behind the
occlusion anyway, meaning this is still considered a recon-
struction failure. Both NBV planners are unaffected by difficult
occlusions and manage to fully reconstruct the drawing in
categories 2 and 5. We also see this on the sharply occluded
portion of the experiment’s basket (category six), where E-
NVP failed only on the occluded portion, while the NBV
planners manage to overcome it and fully scan the drawing.

On that note, all planners perform quite well against surface
discontinuities where voxel sizes are increased to reduce the
disturbance inflicted by the gaps. The lower score of 83.9%
for C-NBV in the simulation’s category 6 is not due to surface
discontinuities, but to grazing incidence.

This effect occurs when the ray incidence is nearly parallel
to the object surface. Grazing incidence dilutes the sampling
density at which point the image obtained is noisier, dis-
torted, and poorer in information. This effect occurs in the
simulation’s category 6 for both NBV planners, as can be
seen by the viewpoint poses and the suffering coverage near
the extremities. The NBV planners may suffer suboptimal
viewing angles since this optical disturbance is unmodeled
by their viewpoint quality metric. E-NVP avoids this problem
by maintaining an orientation quasi-normal to the surface and
thus guarantees better viewing angles. Finally, we note that
both NBV planners achieve similar coverage, meaning that
the greedy approach of G-NBV comes at little coverage costs.

C. Planner Preference and Selection

To summarize the behavior of each planner, E-NVP extrap-
olates from the feature, C-NBV’s search is constrained by the
feature, and G-NBV’s search is guided by the feature. Further-
more, each planner exhibits its own transient characteristics,
strengths, and failure modes, which make it perform better or
worse in particular scenarios.

If fast exploration is not a requirement, it is appropriate to
use the C-NBV planner when the feature and scene are more
complicated. The C-NBV planner searches more exhaustively
due to its larger frontier and search spaces. Using G-NBV
in exceedingly complicated scenes may yield the typical
disadvantages of greedy optimization.

For simpler and smaller objects, E-NVP iterates quickly,
handles gaps exceptionally well, and does not exhibit grazing
incidence. Also, E-NVP works more predictably in confined
spaces as its viewpoint displacement follows the drawing more
conservatively, which is not guaranteed by the NBV planners.

E-NVP should be avoided when the application faces
frequent occlusions and exotic surfaces. Occlusions trigger
premature termination for E-NVP, as it poorly distinguishes
between surface edges and drawing extremities. Meanwhile,
objects with contorted surfaces may cause reachability issues
with the E-NVP planner which tries to remain normal to the
surface. The NBV planners overcome both issues by exploring
more permissively. E-NVP is also limited to two extremities
per feature. The NBV planners handle branches arbitrarily. G-
NBV’s frontier reduction makes it especially suited for this.

While each of the three algorithms exhibits particular
strengths and weaknesses, G-NBV offers well-rounded ad-
vantages in terms of efficient scanning and effective drawing
reconstruction, making it most suitable for our domain ap-
plication in metal recycling. For other applications requiring
feature-driven exploration, it is best to study the particularities
of each problem to select a more appropriate NVP algorithm.

VIII. DISCUSSION

In this section, we discuss specific application scenarios of
the proposed methods and the associated parameters.

A. Performance against Branched Drawings

In a shipbreaking environment, the cuts are kept as simple
as possible to maintain safety and control over the cutting
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Fig. 9. Test object featuring a branched drawing with four extremities.

Fig. 10. Local surface reconstructions around the branched drawing.

operation and its outcomes. Although simpler cutting paths
are preferred, it is still worthwhile to test against branched
drawings—that is, drawings with more than two extremities.

The E-NVP method explicitly models the drawing as a
curve and by design expects—and is therefore limited to—two
extremities and thus cannot operate on branching curves. In
contrast, the C-NBV and G-NBV methods operate at the voxel
level. Accordingly, they have no conception of a branch (nor
of a curve), but instead search through individual voxels in
the space. This suggests that the NBV methods are capable
of handling any number of branches, since as mentioned, they
process the surface as voxels, regardless of branching. These
algorithmic distinctions can be verified in the pseudocode
listings of each of the methods in Section V.

We demonstrate the above remarks in simulation on a test
object with a 4-extremity branched drawing. The test object (a
simple cylinder) and its branched drawing are shown in Fig. 9.
We test each of the viewpoint planners against this test object.

The local surface reconstruction of each method is shown in
Fig. 10. As expected, the E-NVP recovers only two extremities
of the branched drawing. In contrast, both the C-NBV and the
G-NBV methods, recover the entirety of the branched drawing.

B. Behavior of the NBV Algorithms near Corners

Frontier-based NBV approaches may sometimes risk trap-
ping the viewpoints near a surface corner. The purpose of our
NBV algorithms is to map the object’s local surface containing
the desired feature, not the full object nor its surroundings. In
practice, the robotic arm almost never needs to explore the
object surface close enough that it risks trapping the camera
in a corner. Nevertheless, we discuss how such a scenario
may occur and how to avoid it. While our NBV algorithms
maximize (per viewpoint) the information gain relevant to the
desired feature, there is a distance tradeoff between absolute
information gained and relevant feature information:

1) To maximize the information gained per viewpoint, the
camera is incentivized to be placed away from the object
surface. This avoids corner fixation.

2) To capture relevant feature information, the camera must
remain close enough to the desired feature. This may
lead to corner fixation.

Our NBV algorithms’ tendency to avoid corner fixation is
related to its preferred distance from the surface, which can
be tuned using the decay factor αϕ in (7). By increasing αϕ,
viewpoints closer to the surface are preferred. Conversely,
lowering αϕ prefers more distant viewpoints. The tendency
to avoid being trapped in corners can therefore be amplified
or relaxed by decreasing or increasing αϕ, respectively. A
scenario where the camera may get trapped in a corner would
involve the desired featured passing through deep corners of
very large objects. By sufficiently lowering αϕ, the planner
can avoid trapping the camera in a corner.

IX. CONCLUSION

This work develops a feature exploration and reconstruction
methodology for exploring an unknown feature carrying a
desired characteristic (e.g., a color), located on an unknown
object’s surface, which lies in an unknown scene. This compo-
nent serves a broader robotic system designed for automated
cutting in metal scrap recycling. The component requires only
an initial view containing a portion of the desired feature, and
is expected to fully explore and reconstruct it. The underly-
ing methodology is developed around next view planning to
determine the next viewpoint given current scene information.

For this, we present three feature-driven next view planners
that exploit the feature information collected from the scene, to
rapidly and adeptly plan the next view. The first planner relies
on fitting a curve to the feature from which the next view is
extrapolated. The second is a probabilistic formulation on a
voxel occupancy grid on which the search for the next view is
constrained using feature information. The third repurposes
the previous algorithm with greedy optimizations to guide
the search directly via feature information. We evaluate our
planners both in simulation and experiments and discuss their
notable strengths and weaknesses. We note that our third
planner is most suited for scrap cutting. Nevertheless, the other
planners retain advantages in specific scenarios. We believe
that the feature-driven paradigm for exploration as examined
in this work can also be useful outside of scrap cutting for
applications which require feature reconstruction in uncertain
environments. In future work, we plan to continue developing
components for our robotic cutting system, such as, vision-
based torch-cutting control.
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