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Abstract— Disassembly and fragmentation are key operations
in the dismantling and recycling of decommissioned structures
such as aircraft, vessels, and buildings. Often, such operations
are hazardous requiring careful planning for safe execution
based on the experience and intuition of workers and foreper-
sons. We propose and devise an algorithm for the automated
sequencing of cuts to disassemble large structures. Using
feedback from physics-based simulations and a mathematical
model for safety, our algorithm performs sequential decision-
making yielding the order of the cuts on the structure and the
corresponding safe standing positions of the cutter (representing
a worker or a robot). Our goal is to determine a sequence
of cuts and cutter locations to maximize safety for the cutter
and the environment. We establish the optimal solution via
exhaustive searching, and design a greedy decision scheme to
reduce the search runtime. Using our evaluations in simulation,
we compare our greedy decision scheme against exhaustive
searching and random searching, concluding that it satisfices
the goal with high safety scores and low runtime.

I. INTRODUCTION

In light of the Circular Economy [1] and sustainable
development [2], there is a growing importance of the end-of-
life handling of products and structures, such as refurbishing
and material recovery. In effect, the processes of disassembly,
deconstruction, dismantling, and recycling are of particular
interest to decommissioned vessels [3], aircraft [4], [5],
buildings [6], offshore platforms [7] or other large structures.
However, the disassembly of such large structures involves
difficult and hazardous operations often citing concerns over
occupational safety and environmental impact as in the
ship recycling industry [8], [9]. The automation of such
disassembly operations can help reduce the exposure to risks
and hazards by improving occupational safety and decreasing
the dependence on low-cost labor for dangerous tasks. For
instance, these productivity and safety benefits are explored
in robot-assisted building deconstruction [10].

This paper is motivated by the need to break down large
structures using gas torches into smaller units as seen in
shipbreaking and metal scrapyards. In these unstructured and
hazardous environments, an incorrect sequence of cuts can
lead to a variety of dangers such as: fragments falling on the
worker; the structure tipping over due to a shifting center
of gravity; the structure collapsing on the worker, among
other risks. As such, workers and forepersons agree on a
cutting plan prior to conducting any cuts. These plans are
primarily derived from the experience and intuition of the
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Fig. 1. Example cutting plan from a shipbreaking yard prepared by a
worker and foreperson to disassemble a large steel structure.

skilled workers and forepersons as well as general safety
guidelines (see Fig. 1).

Nevertheless, safety planning can be improved by reduc-
ing the dependence on subjective assessment and intuition,
thereby empowering workers and safety teams with auto-
mated sequencing and computational evaluation techniques.
In effect, by utilizing physics-based simulations and safety
modeling, the algorithmic generation of cutting sequences
would enable more concrete evaluation of cutting scenarios.
Thus, cutting sequences can be generated based on physical
laws and can then be refined before execution via the domain
expertise of workers and forepersons. We believe that our
automated decision scheme is a step in the direction of
improving the safety planning of structural disassembly.

In this paper, we tackle the sequential decision problem of
selecting the order of cuts on input structures of varied shapes
and sizes. We assume that the cut locations are determined a
priori and provided to our algorithm, which then sequences
these cuts for a safe operation (Fig. 2). Here, safety is related
to protecting the cutter (a human worker or a robot) from
hazards by keeping them as far away from falling segments.

In our formulation, the structure is modeled as a linkage

Fig. 2. Conceptual diagram illustrating the sequential decision problem
of structural disassembly. The input is a partitioned object with segments
and cutting locations. At each step k, the decision agent selects a cut to
execute until the structure is fully-disassembled. Each choice impacts the
safety of the environment whereby the resulting sequence (B,D,C,A) can
be assessed. The goal is to find a sequence that maximizes overall safety
in the environment, i.e., the cutter and their surroundings.



where its segments are considered links connected to each
other via (rigid) joints. Here, the action of cutting is to
disconnect two links at a particular joint. Our algorithm
gives a series of decisions each of which is selecting one
of these joints and disconnecting it. The cuts are performed
in physics-based simulations wherein the safeties of the
decision outcomes are computed to provide feedback to
the decision agent. The number of decisions (chosen cuts)
is thus equal to the number of joints n, resulting in n
steps to completely fragment the object into its constituent
segments. The goal is then to choose a sequence of cuts
that fully disassembles the structure while maximizing safety.
Here, safety considers dynamic factors which concern the
structure’s physics as it falls in the environment, as well
as geometric factors which concern the proximity of mov-
ing segments (i.e., hazards) to the cutter’s location. These
constructs are precisely defined in the mathematical model
developed in Section IV.

This decision problem can be stated as a combinatorial
optimization, where the objective is to find the sequence
maximizing safety from a finite and discrete set of cutting
sequences. Here, exhaustive search scales factorially with the
input size n (the number of choices, i.e., joints) becoming
intractable for larger inputs. As such, we develop a greedy
decision search to prune large parts of the search space and
satisfice the problem’s goal.

The core novel contributions of this work are:
• Devising an algorithm for the sequencing of cuts on

partitioned structures for safely disassembling them.
• Formulating a mathematical model for safety that in-

corporates both dynamic and geometric factors.
• Evaluating the decision agent’s performance and run-

time in simulation against diverse test objects.
We emphasize our assumption that the input structure is

partitioned a priori into constituent segments. This can be
accomplished by either manually partitioning the object (in
practice, based on the experience of workers and safety
forepersons as in Fig. 1), or by utilizing a volumetric
partitioning algorithm such as [11] which is skeleton-based,
[12] which is search-based, or [13] which is convexity-
based. We instead focus on developing a decision scheme
for algorithmically disassembling such partitioned structures
while maximizing safety for the environment and the cutter.
In turn, the cutter’s ideal location is computationally pre-
scribed at each step depending on the state and on the cutting
tool’s reach. We elaborate the specifics of our modeling and
procedures in Sections III–IV.

II. RELATED WORK

In this section, we review existing work in sequencing
algorithms and approaches for product disassembly as well
as planning methods for building deconstruction.

A. Disassembly Sequence Planning

There is extensive work in disassembly sequence plan-
ning for the end-of-life handling of industrial products.
[14] reviews the recent developments of robotic applications

in product disassembly, distinguishing between predefined
disassembly processes and more adaptable and flexible dis-
assembly schemes. Many optimization-based approaches are
applied for the disassembly process on general product struc-
tures. For instance, [15] uses multi-objective optimization
to maximize parallelism, ergonomics, workload balancing,
while minimizing disassembly time and product rotation
count. [16] formulates the problem as an extended AND-OR
graph while considering practical constraints such as reuse
probability and environmental impacts. [17] represents the
problem as a precedence graph and minimizes the total dis-
assembly cost via integer programming. Other optimization
schemes incorporate human-robot collaboration [18], [19].
Elsewhere, evolutionary [20] and genetic algorithms [21],
[22] are applied extensively for multi-objective optimization
under constraints. Hybrid approaches are also observed such
as using genetic algorithms and AND-OR graphs [23], using
genetic algorithms and fuzzy logic [24], or integrating several
cognitive functions with a knowledge base [25]. In addition
a wide variety of Petri net representations are used to
model the process and resolve it using optimization-based
approaches [26], [27] or fuzzy inference [28]. In addition,
more specialized methods are tailored to a particular range
of products such as electronics [29]–[31].

While these approaches address sequence generation for
disassembling a variety of product structures, they do not
consider the transient effects of the structure’s disassembly
and its impacts on the safety of its surroundings. In part, this
is due to the structured setting of the product’s disassembly
and the comparatively smaller scale of the objects (e.g.,
consumer electronics). Instead, our algorithm targets the
breakdown of large structures, which expose the cutter and
surrounding environment to hazards. To the best of our
knowledge, we present the first work that targets safety maxi-
mization during disassembly by considering the dynamic and
geometric factors of the structure’s breakdown.

B. Building Deconstruction Planning

A related area of research is the deconstruction of build-
ings and its planning. [32] surveys many aspects related to
the life-cycle of buildings and mentions uses and examples of
automated planning for deconstruction. In addition, [33] re-
views key problems associated with building demolition and
the opportunities for automation to mitigate their effects. In
the case of planning, multi-objective optimization schemes
are applied with great variety for selective disassembly
planning [34] and deconstruction strategy planning [35]. For
automated prefabrication, [36] presents a method compar-
ing source and target structure configurations with known
parts to sequence their disassembly and reassembly. Such
deconstruction plans contrast with more lower-level task
planning as in robot-assisted deconstruction [10], [37] and
refurbishing [38].

In recent developments, Building Information Model-
ing (BIM) systems are exploited to obtain structured
representations of building parameters for deconstruction
planning [39]–[43] and for deconstruction waste manage-



Fig. 3. Illustrating the computational elements of the safety model. A decision ak is simulated wherein motions begin at tk and end at tk+1. The
environment space R3 is partitioned into unsafe (U ), immobile (I), and free (F ). The safety model considers both dynamic effects (aggregate motion of
the structure) and geometric effects (proximity of moving segments to the cutter position ck). The cutter’s ideal position ck is computed algorithmically.

ment [44]. However, BIM representations require consider-
able explicit modeling and are available mostly for newer
and highly-organized construction projects. In contrast, many
deconstruction projects involve aging structures which lack a
BIM representation. Moreover, many large structures are not
buildings and are incompatible with the semantics of BIM
systems. In effect, 3D imaging [45] is a flexible alternative
to obtaining structure representations.

In many of these planning techniques, building deconstruc-
tion is tackled statically without considering the kinetics of
falling fragments. This is due to the highly-structured and
highly-regulated nature of the construction industry where
it can be assumed that mechanized operations can safely
execute the disassembly plans via established procedures.
Additionally, in the case of BIM, disassembly plans can be
generated with great precision since much of the building
components and parameters would be explicitly known. In
contrast, scrapyard environments are highly unstructured and
hazardous requiring workers to thermally cut structures using
gas torches. Here, the kinetics of structural disassembly are
crucial for occupational safety. To the best of our knowledge,
we present the first such algorithm to maximize safety during
structural disassembly.

III. PROBLEM FORMULATION

Our structural disassembly problem involves the following
elements: (1) the environment (3D space) containing the
partitioned input structure, the cutter’s position, and the
available decisions, i.e., the remaining cutting locations on
the structure; (2) the dynamics of the environment given
the chosen decisions; and (3) the safety function to score
decisions. We recall that the structure is partitioned into nlinks

segments. Its topology can be represented as a kinematic
chain with nlinks links (the segments) and n joints (the cutting
locations). In addition, the physical properties of each link
are known (and configured in simulation).

Formally, the environment state at decision step k is sk
which describes the object’s state and the cutter’s position
ck ∈ R3. Here, the object’s state encodes the geometric and
dynamic information of each structure segment at step k.
This would include, for instance, each segment’s shape, size,
pose, mass, and so on. The state sk thus describes at step k
the properties of each segment and the cutter’s location ck.
A decision is to select and disconnect one of the structure’s
joints. We denote the decision at step k as ak ∈ Ak. Here,
Ak is the set of available decisions, i.e., the joints that have

yet to be disconnected. Accordingly, a decision sequence can
be expressed as a = (ak)

n−1
k=0 = (a0, . . . , an−1). Note that

the decision sequence bijectively maps the decision steps k
to the joint indices j, that is, a : {k}n−1

k=0 ↔ {j}
n−1
j=0 .

The dynamics of the environment can thus be expressed
as sk+1 = f(sk, ak) where f maps to the next state sk+1

given the decision ak taken at the current state sk. In our
case, f is a physics-based simulation where selecting a cut
(decision ak) at a particular scene (current state sk) leads
to motions in the scene. Once all entities in the simulation
cease to move, the next state sk+1 (i.e., the resultant scene)
is realized. This is in agreement with safety practices in
the scrapyard, where cuts are performed on the structure
after it stabilizes and its pieces cease to move. Now, the
safety of a decision can be measured using a safety function
S : Ak → [0, 1] that maps from decisions to the unit interval.
Specifically, the safety function scores the decision ak based
on its outcome and transition to sk+1, i.e., S(ak) is a
function of sk+1 and the transition from sk to sk+1. We now
define the safety of a decision sequence a as the weighted
geometric mean of its individual decision safeties S(ak), as
in: S(a) =

∏n−1
k=0 S(ak)

λk = S(a0)
λ0 · · ·S(an−1)

λn−1 .
The weights λk are expressed as a proportion, i.e.,

λk ∈ [0, 1] and
∑n−1

k=0 λk = 1. These weights λk are assigned
such that the worst-case decision awc = argminak∈a S(ak)
has a corresponding weight of λwc whereas all remaining
weights λk ̸=wc = 1−λwc

n−1 are uniform. By setting λwc = 1
2 ,

the sequence safety is penalized by the worst-case deci-
sion irrespective of the sequence length. In doing so, the
sequence safety can assess and compare sequences of any
length yet remains skewed by its most dangerous decision.
By design, this multiplicative formulation heavily penalizes
the sequence safety for unsafe decisions. For instance, one
strictly unsafe decision with S(ak) = 0 would result in
a strictly unsafe sequence S(a) = 0. This is a desirable
modeling choice due to the sequential nature of the problem
(non-episodicness) given the permanent harm inflicted by
potential hazards. Note that λwc quantifies the weight of the
worst-case decision, meaning that a higher λwc leads to a
more conservative measure of sequence safety.

Finally, the goal is to maximize the sequence’s safety:

a∗ = argmaxa S(a) = argmax
a0,...,an−1

n−1∏
k=0

S(ak)
λk (1)

In the next sections, we define our safety model S as well



as our decision algorithm to determine the cutter’s position
ck and the decisions ak.

IV. SAFETY MODEL

The safety S(ak) of a decision ak is modeled in such a
way to capture the dynamic and geometric outcomes of the
transition from sk to sk+1, This starts when the cut is made
and stops when all segments in the scene stop moving.

We define the safety S(ak) as:

S(ak) = Sd(ak)Sg(ak) (2)

where Sd(ak) is the dynamic safety and Sg(ak) is the
geometric safety. We note that each of S, Sd, and Sg map
decisions to the unit interval, i.e., Ak → [0, 1].

By design, Sd captures the kinetic outcomes of cutting
the structure, i.e., the ‘intensity’ of the segments’ motion. In
contrast, Sg captures the kinematic outcomes of cutting the
structure, i.e., the ‘closeness’ of the segments’ paths as they
fall relative to the cutter’s position. These modeling choices
are based on the following assertions for decision safety:

• The decision is safer when the aggregate motion of the
segments in the scene has a lower magnitude.

• The decision is safer when the aggregate traversal of
the segments in the scene is further from the cutter’s
position.

Both Sd and Sg are formally defined below accordingly.

A. Dynamic Safety
While there are many ways to express the magnitude of the

segments’ aggregate motion, we wish to concisely capture
inertial effects during motion. As such, a straightforward
choice is to use the kinetic energies of each segment.

We first define the time interval t ∈ [tk, tk+1] wherein the
transition from sk to sk+1 takes places and the segments
start (t = tk) and stop moving (t = tk+1). Now, we
define Ti(t) and Ui(t) to be the kinetic and gravitational
potential energies of each segment i ∈ {1, nlinks} as well
as their totals T (t) =

∑
i Ti(t) and U(t) =

∑
i Ui(t).

We note that the total mechanical energy T (t) + U(t) in
the scene is conserved for t ∈ [tk, tk+1] since dissipative
forces (e.g., friction, air resistance) are negligible. As such,
we can define the normalized energies T̃ (t) = T (t)

T (t)+U(t)

and Ũ(t) = U(t)
T (t)+U(t) . These capture the ratios of kinetic

and potential energies respectively. Stated differently, they
capture the instantaneous ratio of mechanical energy due to
motion and to non-motion.

We would like Sd to increase with a larger ratio due to
non-motion, i.e., when the structure is disassembled more
gently. We thus define dynamic safety as follows:

Sd(ak) = min
t∈[tk,tk+1]

Ũ(t) (3)

As Sd is the minimum of Ũ(t) across the transition from sk
to sk+1, Eq. (3) yields the desired properties of mapping to
[0, 1] and of decreasing with higher aggregate motion. The
relationship between the energies (Ũ , T̃ ) and the decision
ak is implicit whereby the decision’s outcome determines
the energy values through the aforementioned manner.

B. Geometric Safety

In addition to dynamic safety, we wish to consider the
proximity of the segments’ traversal relative to the cutter’s
location during the transition interval t ∈ [tk, tk+1].

For this, we partition the environment space R3 into three
sets (Fig. 3): the unsafe space U , the immobile space I, and
the free space F . These three spaces are defined as follows.

The unsafe space U contains all points visited by
moving object segments during the transition interval
t ∈ [tk, tk+1] after a decision ak. This can be expressed as
U =

⋃
t∈[tk,tk−1]

V (t) where V (t) =
⋃

i=1 Vi(t) is the set
of points contained within all moving segments at time t
and Vi(t) is the set of points contained within the moving
segment i at time t. Thus, U represents the collision set
in the environment containing all points visited by moving
segments throughout their motions.

The immobile space I contains the points of all seg-
ments that remain immobile throughout the transition interval
t ∈ [tk, tk+1] after a decision ak. These are the stationary
segments, which are not hazards. The free space F contains
the points that remain unoccupied throughout the transition
interval t ∈ [tk, tk+1] after a decision ak. These are safe and
empty locations that have not experienced collisions.

Using these definitions, we distinguish the unsafe space U
from the safe space S = U∁ = F ∪ I. As such, the indicator
function 1S : R3 → {0, 1} partitions the environment into
unsafe positions where 1S(x) = 0 and safe positions where
1S(x) = 1. This safety indicator function expresses the
safety of a position in the environment.

We algorithmically determine an ideal position ck for
the cutter as described in Section V. This ck represents
the prescribed location that the cutter should cut from. In
actuality, the cutter may stray from their ideal position
and we thus represent their position as a random variable
x ∈ R3. We model x to follow a unimodal and symmetric
distribution centered at its mode (the cutter’s ideal position
ck) and with radial decay. The intent is to decrease the
probability of the cutter’s presence as ∥x − ck∥2 grows.
For this, a trivariate Gaussian distribution with mean ck and
covariance matrix r3I3 is appropriate. With x ∼ N (ck, r

3I3),
we obtain its probability density function p(x) by evaluating
the multinormal PDF with mean ck and covariance r3I3.

p(x) =
1

r3
√

(2π)3
exp

[
− 1

2r2
∥x− ck∥22

]
(4)

Finally, define the geometric safety Sg(ak) as:

Sg(ak) = E[1S(x)] =

∫
x∈R3

1S(x) p(x) dx (5)

In this manner, Sg(ak) represents the cutter’s expected safety
in the environment after decision ak given their ideal position
ck. Also since 1S(x) ∈ {0, 1}, Sg maps to [0, 1] as desired.
Moreover, the parameter r can be interpreted as a ‘radius’
wherein the cutter’s safety is most crucial. A smaller r decays
the safety scores rapidly prioritizing the safety nearest to the
prescribed position. Conversely, a larger r decays the safety



Fig. 4. The cutter’s ideal position is computed as the locus point in the
free space (x ∈ L ∩ F ) that is maximally-distant from the unsafe space U .

scores more slowly giving added consideration to regions
further away from the prescribed position.

In implementation, the formulation is discretized as fol-
lows: the segments’ kinematic and kinetic information are
sampled from the simulation as time-series data; the set S
and its indicator function 1S are implemented as a binary
voxel grid; and the Eqs. (3) and (5) are approximated using
discrete sums.

V. DECISION ALGORITHM

With the safety function S defined and the decision
goal (a∗, S∗) established in Eq. (1), we now describe the
procedures and schemes used to solve the decision problem.

A. Cutter’s Ideal Position

The decision agent not only generates a disassembly
sequence, but also specifies the cutter’s prescribed position
for each cut (Fig. 4). In effect, the safety model requires
this position ck as seen in Eq. (4). We emphasize the ad-
vantage of simulating the environment dynamics: the ability
to observe the cut’s outcome first and then decide where
the best position to cut from should have been. In this
way, the cutter’s ideal position is determined a posteriori.
Specifically, the decision agent attempts and simulates a cut
ak, measures its outcome sk+1, and then determines ck, i.e.,
the safest position to cut from. Here, we specify a procedure
to compute ck given the decision ak and its outcome sk+1.

define ComputeIdealPosition(ak, sk+1,m) :
(F , I,U)← GetPartitions(sk+1)
L ← GenerateLocus(ak,m)
ck ← argmax

x∈L∩F
dist(x,U)

return ck

After the cut, we retrieve from sk+1 the space’s partition-
ing into unsafe (U), immobile (I), and free (F) as defined
in Section IV-B. The cutter’s position locus L contains all
candidate ideal positions and depends on the cutting margin
m > 0 defined by the cutting tool’s length. For instance, the
cutting torch used in shipbreaking is around 2m long, giving
the cutter a margin of m = 2m. We model the cutter’s locus
as a sphere centered at the joint location of ak with radius m.
We wish to position the cutter in the free space furthest from
the unsafe space. This is expressed as the point in L∩F with
maximum distance from U , or argmaxx∈L∩F dist(x,U). We
do not consider the case of segments so large that L∩F = ∅
wherein the cutter cannot safely reach the joint within a
radius m. In such cases, the object must be re-partitioned in

a reasonable manner to enable safer cutting. In a discretized
implementation, one can rank the candidates by distance
and select the furthest that is feasible in terms of cutting
ergonomics. Now, a decision ak can be evaluated as follows.

define EvaluateDecision(ak) :
sk+1 ← SimulateDecision(ak)
ck ← ComputeIdealPosition(ak, sk+1,m)
Sk ← ComputeSafety(ak, ck, r)
return (Sk, ck)

The procedure SimulateDecision represents the physics
simulator which loads the environment containing the input
paritioned model and computes the outcomes of the cut ak.
The procedure ComputeSafety implements Eqs. (2)–(5).

B. Decision Search Schemes

We develop three alternative searches: exhaustive (ES),
greedy (GS), and random (RS). For each search, the input
is the partitioned object with n joints and the output is the
solution (a, S,C) containing the decision sequence a, its
safety S, and the sequence C of ideal positions. In addition
the parameters r (see Section IV-B) and m (see Section V-A)
are specified based on application requirements.

ES finds the optimal solution a∗ of Eq. (1). Both ES
and RS provide a basis of comparison for computational
complexity and safety performance. GS approximates a∗ by
optimizing locally ak = argmaxa∈Ak

S(ak). The schemes
are specified in Algorithms 1–3. We note that A is the set
of all decision sequences. These are permutations (without
replacement) of the structure’s n joints yielding a cardinality
of n! sequences. We recall that Ak is the set of remaining
decisions available at step k. The cardinality of Ak is n− k
and its contents depend on Ak−1 and ak−1 (for k > 0).

Algorithm 1: Exhaustive Decision Search
Initialize safety for the solution sequence: S ← 0
Iterate over all possible decision sequences.
for all acand ∈ A do

Iterate over each decision per sequence.
for each ak ∈ acand do

(Sk, ck)← EvaluateDecision(ak)

Compute the candidate solution components.
Scand ←

∏n−1
k=0 S

λk

k , Ccand ← (c0, . . . , cn−1)
Accept candidate solution upon improvement.
if Scand > S then

(a, S,C)← (acand, Scand,Ccand)

return (a, S,C)

C. Asymptotic Performance

We express the computational complexity as the total
decision evaluations C(n) for an input size n (number of
decisions). A decision evaluation refers to a call to the
EvaluateDecision routine which involves simulating the
decision, computing its cutter’s ideal position, and comput-
ing its safety. ES as indicated in Algorithm 1 performs



Algorithm 2: Greedy Decision Search
Iterate over each decision step of the solution.
for k ← 0, . . . , n− 1 do

Initialize safety for the current decision: Sk ← 0
Iterate over all currently available decisions.
for all acand ∈ Ak do

(Scand, ccand)← EvaluateDecision(acand)
Accept candidate decision upon improvement.
if Scand > Sk then

(ak, Sk, ck)← (acand, Scand, ccand)

Compute the solution’s components.
a← (a0, . . . , an−1), S ←

∏n−1
k=0 S

λk

k

C← (c0, . . . , cn−1)
return (a, S,C)

Algorithm 3: Random Decision Search
Iterate over each decision step of the solution.
for k ← 0, . . . , n− 1 do

Randomly select a currently available decision.
ak ← randAk

(Sk, ck)← EvaluateDecision(ak)

Compute the solution’s components.
a← (a0, . . . , an−1), S ←

∏n−1
k=0 S

λk

k

C← (c0, . . . , cn−1)
return (a, S,C)

n × n! evaluations. Even with efficient implementation,
e.g., memoization (storing reusable states), these reduce to
C(n) =

∑n−1
k=0

n!
(n−k−1)! ∈ O(n!) evaluations. GS runs

C(n) =
∑n−1

k=0(n − k) = n(n+1)
2 ∈ O(n2) evaluations and

RS runs C(n) = n ∈ O(n) evaluations.

VI. EVALUATION IN SIMULATION

We implement our decision environment using the simula-
tor Gazebo [46] to evaluate our decision agent’s performance
using each of the search schemes against different inputs.

A. Simulation Environment

In our simulations, the object segments are considered
rigid bodies connected as a kinematic chain. A cut is
implemented as an instantaneous disconnection between two
segments. Our simulations model rigid-body dynamics, grav-
itational and frictional forces, and collisions. A simulated
experiment consists of loading the input object, executing
cuts per the decision agent, and updating the environment’s
state until a solution for the object’s full disassembly is
chosen. We test our implementation on the 12 partitioned
objects (Fig. 5). We illustrate the decision outputs of each
decision scheme against the object 5B in Table I and in Fig. 6.

B. Simulation Results

As can be seen in Fig. 6, ES and GS yield similar
decisions for object 5B differing only in their second and
third decisions which are permuted. In contrast, RS can

Fig. 5. The 12 partitioned test objects are shown with their label indicating
the number of cuts (e.g., 3A has n = 3) and their structural height.

TABLE I
OUTPUTS FOR OBJECT 5B SHOWING THE SEQUENCE AND ITS SAFETIES

Scheme Sequence a Decision Safeties Sk

Exhaustive (4, 2, 3, 5, 1) (0.79, 0.76, 0.78, 0.63, 0.65)
Greedy (4, 3, 2, 5, 1) (0.79, 0.76, 0.71, 0.62, 0.64)
Random (2, 1, 5, 3, 4) (0.79, 0.28, 0.74, 0.48, 0.99)

yield highly-dangerous decisions where large chunks of the
structure tumble dynamically. In effect, the safeties of its
worst decisions are S1 = 0.28 and S3 = 0.48.

More generally, we summarize in Table II the decision
agent’s performance for each search scheme against each
test structure. We note the safety of each scheme’s solution
S(a) and its search cost C(n) measured as the number
of decision evaluations (see Section V-C). For example,
ES computes for object 3A the optimal sequence a∗ with
safety S(a∗) = 0.7116 using C(3) = 18 decision evalua-
tions. Similarly, GS computes the greedy solution a† for
object 3A and its safety S(a†) = 0.6989. The random
solution is uniformly-sampled, and therefore we compute
its expected safety and worst-case safety, which for object
3A are E[S(a)] = 0.6776 and S(awc) = 0.6495 where
awc = argmina∈A S(a).

We simulate all n! sequences for each n-segment structure
in order to compute the safety S(a∗) of the optimal sequence,
the expected safety E[S(a)] of the uniformly sampled se-
quence, and the safety S(awc) of the worst-case sequence.

C. Discussion of the Results

We directly compare in Table III the performance of GS
against that of ES and RS. We compare the greedy solution
against the optimal solution via the ratio of their safeties
S(a†)
S(a∗) . Furthermore, we compute the relative improvement
of the greedy solution’s safety against that of the random
solution’s expected and worst-case safeties. For our 12 test
objects, the greedy solution a† yields a safety that is on
average 96.72% of the optimal sequence’s safety S(a∗).
In some cases, the greedy solution is near optimal where
S(a†)
S(a∗) > 99% such as with objects {3B, 3C, 4B, 4C, 5B}.



Fig. 6. The decision outcomes of each search scheme is demonstrated on
object 5B. We note the difference in safety outcomes between the random
scheme and the other schemes. The safety scores can be found in Table I.

Moreover, the greedy solution a† performs on average
6.10% better than uniformly-sampled random searching and
17.83% better than the worst-case sequence, the latter of
which would yield potential risks and hazards. In addition,
our results reveal that some objects are inherently safer to cut
where decisions weakly impact the safety outcomes, e.g., for
object 4A the solution a† is only 0.05% safer than random
and 1.10% safer than the worst-case sequence. Conversely,
some objects are inherently much more dangerous to cut
(4C, 5A, 5B, 5C) where decisions greatly impact the safety
outcomes, e.g., for object 5B the solution a† is 18.12%
safer than random and 33.64% safer than the worst-case
sequence. Our results suggest that GS yields significantly
safer decisions than RS, sometimes achieving near-optimal
safety using only O(n2) decision evaluations. For illustration
with n = 5 as in object 5B (Fig. 6), the GS solution is found
in 15 evaluations, instead of 600 as with the ES solution.

VII. CONCLUSION

We formalize the safe disassembly of large structures
as a sequential decision problem for which we develop
an algorithm to maximize the safety for the cutter and
the surrounding environment. By simulating a decision’s
outcomes, the agent partitions the environment into safe

TABLE II
SIMULATION RESULTS OF EACH SCHEME’S COST AND PERFORMANCE

Input Exhaustive Greedy Random
(Obj, n) C(n) S(a∗) C(n) S(a†) C(n) E[S(a)] S(awc)
(3A, 3) 18 0.7116 6 0.6989 3 0.6776 0.6495
(3B, 3) 18 0.8402 6 0.8378 3 0.8150 0.7505
(3C, 3) 18 0.8104 6 0.8097 3 0.7561 0.7149
(3D, 3) 18 0.7628 6 0.7270 3 0.7180 0.6470
(4A, 4) 96 0.9226 10 0.9050 4 0.9045 0.8950
(4B, 4) 96 0.8053 10 0.7980 4 0.7268 0.6480
(4C, 4) 96 0.7934 10 0.7858 4 0.7402 0.5661
(4D, 4) 96 0.8053 10 0.7929 4 0.7797 0.6701
(5A, 5) 600 0.8571 15 0.8467 5 0.7365 0.5259
(5B, 5) 600 0.6849 15 0.6838 5 0.5599 0.4538
(5C, 5) 600 0.8068 15 0.7367 5 0.6652 0.5322
(5D, 5) 600 0.8602 15 0.7861 5 0.7680 0.6990

TABLE III
EVALUATION OF THE GREEDY SCHEME’S PERFORMANCE

Input Greedy vs. Exhaustive Greedy vs. Random
(Obj, n) S(a†)/S(a∗) S(a†)−E[S(a)]

S(a†)
S(a†)−S(awc)

S(a†)
(3A, 3) 98.22% 3.04% 7.07%
(3B, 3) 99.72% 2.72% 10.42%
(3C, 3) 99.91% 6.62% 11.71%
(3D, 3) 95.31% 1.24% 11.01%
(4A, 4) 98.09% 0.05% 1.10%
(4B, 4) 99.09% 8.92% 18.79%
(4C, 4) 99.05% 5.81% 27.96%
(4D, 4) 89.92% 1.67% 15.49%
(5A, 5) 98.79% 13.01% 37.89%
(5B, 5) 99.84% 18.12% 33.64%
(5C, 5) 91.32% 9.71% 27.76%
(5D, 5) 91.38% 2.30% 11.07%

Mean 96.72% 6.10% 17.83%

and unsafe. Thereafter, an ideal position for the cutter is
prescribed and the decision’s safety is measured. Safety is
modeled to capture the decision’s dynamic outcomes, i.e.,
the structure’s resulting kinetics, as well as the geometric
outcomes, i.e., the motion’s proximity to the cutter’s pre-
scribed position. We design three decision search schemes
to find a solution consisting of the decision sequence, its
safety score, and the sequence of prescribed cutter positions.
These schemes are tested in simulation against 12 partitioned
objects wherein their safety performance and computational
costs are measured. Our results show that the greedy decision
search satisfices the problem with considerably less computa-
tional cost than exhaustive searching. In essence, our greedy
algorithm: (1) scales better with input size n by computing
O(n2) rather than O(n!) decision evaluations; (2) yields
good solutions (sometimes near-optimal); (3) is noticeably
better than random selection (sometimes drastically); and, (4)
is significantly better than the worst-case choice. In future
work, it is worth incorporating more realistic dynamics and
decision parameters to reduce the sim-to-real gap.
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