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Abstract— The industrial operation of oxy-fuel metal cutting
via gas torches involves tasks such as ignition, preheating,
and combustion along the target surface. Automated oxy-fuel
cutting systems are exposed to risks and anomalies that can
lead to incorrect actions and safety hazards. In this paper, we
develop a classifier for online task state estimation to assess the
cutting robot’s actions, detect anomalies, and reduce the risk of
hazards. Using representative footage from our robotic cutting
experiments, we curate an image dataset labeled with four types
of cutting task states. Using deep learning methods, we design
and train a convolutional neural network model for classifying
the cutting task state from input images. The classifier architec-
ture is optimized for rapid inferences during online estimation.
After evaluation, our classifier achieves an overall accuracy of
93.8% with high inference speeds on two types of representative
hardware. Our ‘Oxy-fuel Cutting Task State’ (OCTS) dataset
is available at doi.org/10.5281/zenodo.7734951.

I. INTRODUCTION

The global economy of the future is projected to become

increasingly automated. The industrial sector is particularly

subject to pro-automation market pressures such as falling

prices of automation systems [1]. However, scaling up the

automated economy comes with its unique challenges. In par-

ticular, the rising importance of workplace safety [2] imposes

stricter safety requirements in the design and adoption of

automated systems [3]. This is emphasized in the automation

of hazardous work that is highly-exposed to risk, such as

metal cutting and welding. In parallel, there is considerable

incentive to automate the difficult processes of oxy-fuel

cutting [4] and welding. In existing work, the focus is often

to achieve some autonomous functionality while safety is not

sufficiently addressed.
In this work, we develop a classifier for task state esti-

mation to monitor automated oxy-fuel cutting systems and

detect anomalies for the benefit of increasing workplace

safety. For this, we curate an image dataset of oxy-fuel metal

cutting scenarios, representative of key task states in oxy-fuel

cutting. The images are obtained from a series of recorded

cutting experiments performed with a torch-equipped robot

that cuts steel plates. These images are then labelled into

distinct task state classes, identified by their dominant visual

feature (‘Torch flame’, ‘Preheating pool’, ‘Combustion pool’,

and ‘Not applicable’). Using this data, we adopt a deep

learning approach for capturing the data’s feature hierarchy

via a convolution neural network (CNN) model.
The purpose of this classifier is to monitor live oxy-fuel

cutting operations. The classifier receives online vision data
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Fig. 1. The classifier interprets the environment percepts and provides the
perceived task state to the cutting robot. When the internal and perceived
task states match, the robot actions are validated and executed. Upon
disagreement, an anomaly is declared and cutting operations are halted.

and infers the cutting task state, providing an interpretation

to the robot (Fig. 1). When the classifier’s interpretation

and the robot’s internal task state agree, an anomaly is

unlikely and the robot proceeds with its actions. Conversely,

a discrepancy between them suggests the occurrence of an

anomaly in which case cutting operations are halted for

safety inspection and response. The aim is to help validate

the robot’s actions for the detected task state. By monitoring

the task environment and signaling discrepancies with the

robot’s actions, the classifier adds one layer of safety.

The core contributions of this work are:

1) Creating an image dataset for oxy-fuel cutting task

states, obtained from automated cutting experiments.

2) Developing a CNN model to classify the task state

from input images with high inference speed.

3) Evaluating the classifier’s performance against a sep-

arate test set previously unseen by the classifier and

identifying its strengths and limitations.

To the best of our knowledge, this is the first study in the

literature focusing on vision-based state estimation of oxy-

fuel cutting operations. Furthermore, this work publishes

the first dataset in the literature covering the task states

of oxy-fuel cutting and the first treatment in developing an

appropriate classifier for these task states.

II. RELATED WORK

Industrial processes using welding, cutting, and laser

tooling are studied using a variety of instrumentation and

techniques to extract higher-level perceptual information

from lower-level sensory data. Often, the processed area

(which may exhibit a heat pool or melt pool) is monitored

and characterized to model or predict its effect on process

quality, anomaly and defect detection, or penetration depth.

Non-learning based techniques can be used to characterize

combustion, e.g., for the efficient operation of industrial



Fig. 2. Sequence of events (labeled in black) and tasks (labeled in color) in vision-based autonomous oxy-fuel cutting. Conceptually, the robot is equipped
with a vision sensor and cutting torch and must cut the target object along the desired cutting path. The cutting events are the instances that trigger the
cutting tasks. The footage shown is retrieved from vision-based cutting experiments using our 1-DOF cutting robot.

furnaces using classical image processing [5] and 3D instru-

mentation [6]. However, these approaches are often limited

to processes that can be explicitly modeled.

More recent advances focus on applying learning-based

approaches to infer task-relevant information while general-

izing to a broader range of input scenarios. Indeed, the aim

of learning-based applications to is to enable or improve

industrial processes by monitoring for errors and ensur-

ing that the goal states are reached. Such data-driven and

learning-based methods are successfully applied to a wide

variety of media: gas tungsten arc welding (GTAW) [7]–

[11], gas metal arc welding (GMAW) [12], [13], submerged

arc welding [14], variable polarity plasma arc welding [15],

laser welding [16]–[18], wire-arc additive manufacturing

(WAAM) [19], [20], wirefeed laser additive manufactur-

ing [21], and orthogonal metal cutting [22].

In effect, neural network models are used abundantly for

such industrial processes. While diverse neural architectures

are adopted, convolutional neural networks [9], [10], [13],

[16], [18], [20], [21], [23], [24] are most encountered in these

applications. Often, pre-trained models are used or adapted

such as the ResNet architecture for its deep convolutional

layers and residual connections [17], [19]. Other approaches

applied include generative adversarial networks [12], ensem-

ble methods [11], autoencoders [22], vision transformers [8],

transfer learning [7], and extreme learning machines [15].

In practice, while the problems encountered can exhibit

similarities, they also carry distinct challenges due to the

particularities of their tooling and the differences in their

data. These domain-specific distinctions not only suggest

preference for certain learning models, but also inform about

auxiliary techniques that exploit domain knowledge. For

instance, X-ray imaging can reveal more information for

certain weld defects [18], [23]. Similarly, problem-specific

advantages arise with other auxiliary techniques such as mul-

timodal sensing [12], [16], [19], multisource sensing [11],

image preprocessing [7]–[10], and acoustic sensing [13].

The following problems in prior work are most related

to ours. For GTAW and weld pool image data: penetration

classification (3 classes) in [11] and prediction in [10]; pool

classification (2 classes, 6 classes) for defect identification

in [7]; and, penetration state classification (4 classes) for

penetration recognition in [8]. For GMAW and weld pool

image data: pool state classification (4 classes) for defect

detection in [12]. For WAAM and melt pool image data: pool

state classification (4 classes) for anomaly detection in [20].

While there are similarities, our problem is distinct for

the following reasons. (1) The industrial process is oxy-fuel

metal cutting producing a heat pool from combustion, not

a weld pool or melt pool. (2) The image data is particular

to the oxy-fuel cutting medium and its associated events and

tasks. (3) The problem is to classify the cutting task state for

monitoring the robot actions’ safety and correctness. (4) The

classifier’s inference time must be sufficiently low for online

estimation, thus constraining its design and architecture.

Moreover, the aim of task state estimation is to enable

higher-level reasoning about the robot’s actions from lower-

level data. For instance, [25] applies this strategy to robot

contact tasks, extracting high-level action grammars from

low-level trajectory data. To the best of our knowledge, this

is the first work applying deep learning to automated oxy-

fuel cutting for classifying its task states.

III. PROBLEM FORMULATION

This section delineates the problem elements: the process

and tooling of oxy-fuel cutting, the events and tasks relevant

to its automation, and the role of task state estimation.

A. Oxy-fuel Cutting

The operation of oxy-fuel cutting consists of manipulating

a cutting torch along a metal surface to cut through it along

a desired path. The torch flame is produced by burning an

oxy-fuel gas mixture, where the fuel is typically acetylene

or propane. Material removal is usually achieved via a

combustion reaction with the metal (most commonly carbon

steel). This requires the metal surface to be sufficiently

preheated using the torch flame. During preheating, the

heated region on the metal surface exhibits the formation

of a heat pool. This apparent bright blob is an accumulation

of heat where combustion is most intense. Upon sufficient

preheating, combustion is intensified by increasing oxygen

flow and the torch is moved along the desired cutting path

at an adequate velocity to maintain adequate conditions for

combustion and material removal.

B. Automated Cutting

The oxy-fuel cutting process is complex and involves

several events and tasks. Its automation may be tackled

via different approaches, depending on the sensing modality

and the desired degree of autonomy. We focus on vision-

based automated cutting due to the visual stimuli produced



by the heat pool and the vision-based tracking inspired by

the techniques of skilled cutting workers. This requires a

representation of the cutting problem tailored to the vision-

based approach of its automation.

The sequence of events and tasks during vision-based

automated oxy-fuel cutting is illustrated in Fig. 2. The key

events during the cutting process are: (1) Ignition: The torch

flame is ignited and focused; (2) Preheating: The flame is

positioned at the surface; and, (3) Combustion: Oxygen flow

is increased via a lever. Accordingly, the cutting system

executes these tasks: (1) Calibration: Calibrate the vision

system against the torch’s flame; (2) Conditioning: Heat the

surface to combustion conditions; and, (3) Control: Regulate

the torch motion for combustion cutting.

C. Task State Estimation

The above sequence of tasks for vision-based cutting,

while effective, executes under the assumption of ideal

operational conditions. When the expected cutting event is

detected, the task state is updated and the robot continues

onto its next action. In practice, oxy-fuel cutting operations

are exposed to various potentials errors, risks, and hazards.

We enumerate instances of potential failure modes: ig-

nition may fail; the flame may not be correctly focused;

calibration may fail due to excess noise; combustion may fail

fault of insufficient conditioning; faulty oxy-fuel tooling and

leaks; excess sparks, slag, fire, or other anomalies; electronic

or mechanical failures, and software errors; among others.

Such failures would manifest as anomalies in the image

frame and the heat pool. While the automated system pos-

sesses internal state of its actions, it lacks external state of

its environment. As such, under anomalous conditions the

cutting agent’s actions may be incompatible with the state of

its environment. Under such cases, there may occur ineffi-

ciencies, failures, hazards, and dangers without intervention.

To address this, the cutting system tasks must be moni-

tored and validated. This can be achieved using a classifier

that infers from the robot’s visual input one of four task

states identified by their dominant feature in the image:

‘Torch flame’, ‘Preheating pool’, ‘Combustion pool’, and

‘Not applicable’. This classifier is trained on representative

footage, labeled with the desired task states. During cutting,

the robot would check its internal task state with the classifier

before taking action (see Fig. 1). Using this task state

estimation, the robot gains some external awareness and

performs safer cutting operations.

IV. OXY-FUEL CUTTING DATASET

To train and test the task state classifier, we develop a ded-

icated dataset that captures the particularities of automated

oxy-fuel cutting. This need is reinforced due to the lack

of relevant datasets that are publicly available. Our ‘Oxy-

fuel Cutting Task State’ (OCTS) dataset can be accessed at

doi.org/10.5281/zenodo.7734951.

Fig. 3. The 1-DOF cutting robot performs cutting experiments wherein its
RGB camera records the affected area on the steel plates. We note that the
camera is mounted at a fixed pose towards the torch tip and that its lens is
covered with a tinted visor (as is worn by skilled cutters). This tinted visor
dims the scene, focuses on the flame and the pool, and prevents image
saturation due to the extreme brightness of the flame and the pool.

TABLE I

SUMMARY OF THE DATA COLLECTION PARAMETERS

Total Experiments 50 Frames Collected 142671

Footage Recorded (min) 119 Frame Dimensions (px) (640, 480)

Recording Rate (fps) 20 Frame Channels (R,G,B)

Fig. 4. Sequential footage from a particular experiment is shown at intervals
of 200 frames (or 10 second). This particular cut is executed without fault.

TABLE II

SUMMARY OF DATA LABELS AND THEIR ASSOCIATED TASK STATES

Label Element Nominal Task State
TF Torch flame Calibrate the vision system.

PP Preheating pool Condition the metal surface.

CP Combustion pool Control the torch motion.

NA Not applicable Halt the cutting operations.

A. Data Collection from Cutting Experiments

Using our automated setup shown in Fig. 3, we per-

form cutting operations (as in Fig. 2) on steel plates. The

area of interest on plates is recorded using the robot’s

eye-in-hand RGB camera. In total, 50 experiments across

11 sessions are recorded using the Intel RealSense D435

yielding 142,671 collected images. Some cuts are completed

without fault (Fig. 4), while others are subjected to diverse

failure modes. Depending on the severity of the failure, cuts

are either fully completed, or partially completed due to

interruptions. In this manner, the footage spans a broad range

of representative, varied, and diverse cutting conditions. The

data collection parameters are summarized in Table I.

B. Data Labels & Classification Problem

The classification problem is based on identifying the

prominent element in the image: the torch flame (TF),

the preheating pool (PP), or the combustion pool (CP).

In addition, the label NA corresponds to ‘Not applicable’



Fig. 5. Sample frames for each class from various experiments. We note the importance of covering variations of the key elements and ambient conditions.

where no dominant element is identified. This indicates

cutting conditions outside the range of normalcy and is

treated as an anomalous state. The cutting task state in an

image is identified by its associated dominant element as

summarized in Table II. When the dominant element in the

image frame is the torch flame (TF), the nominal task is

to calibrate the vision system; when it is the preheat pool

(PP), to condition the surface; and when it is the combustion

pool (CP), to control the torch motion. When no dominant

element is found (NA), the corresponding task is to halt

cutting operations for inspection and response. In addition,

a mismatch between the detected element (perceived task

state) and the robot’s intended action (internal task state)

constitutes anomalous behavior. Sample data for each class is

also shown in Fig. 5. As such, the problem is structured as a

multinomial classification with four labels: {TF, PP, CP, NA}.

In our dataset, each image is labeled with one of these four

labels according to the prominent element in the image and

its associated task state.

V. MODEL DESIGN

In this section, we detail the architecture of our CNN-

based model and its input data’s preprocessing.

A. Model Architecture

The purpose of the model is to classify input images

into one of the aforementioned four cutting task states.

The subject and contents of the image data incorporate a

large variety of geometrical and chromatic interrelationships

between the features of the torch flame, the heat pool, and

the surrounding environment. Accordingly, it is non-trivial

to express its intricate feature hierarchy via explicit feature

engineering. When considering the various model choices for

image classification [26] and their respective advantages, we

find that CNN models are adequate for our problem given

their established capabilities for feature engineering.

Additionally, given our constraints on inference speed

for online monitoring requirements, we consider the effects

Fig. 6. The preprocessing is demonstrated on samples from each class.

of design parameters on neural network expressivity and

performance [27], [28]. In particular, we desire a CNN

architecture that is large enough for enabling the model to

express a sufficient amount of variations within the data and

thus yield a satisfactory prediction accuracy. At the same

time, the model’s architecture must be small enough for rapid

inference during online monitoring.

By factoring this tradeoff between prediction accuracy

and inference speed during design iterations, we adopt the

architecture shown in Fig. 7. Our neural network model

ŷ = f(X,θ) maps the input X ∈ R
3×640×480 which are 3-

channel RGB images of size 640×480, to the output ŷ ∈ R
4

which are the class scores, given the mapping parameters

θ, i.e., the model weights. Our network f (expressed in

functional form) is composed of four functional blocks,

f = B4 ◦ B3 ◦ B2 ◦ B1. (1)

At the input, we begin with two convolutional functional

blocks B1 and B2 composed as follows:

B1 = Pool11 ◦ Drop11 ◦ σ ◦ Conv12 ◦ σ ◦ Conv11
B2 = Pool21 ◦ Drop21 ◦ σ ◦ Conv22 ◦ σ ◦ Conv21

(2)

Here, Conv are convolutional layers, Pool are max-pooling

layers, Drop are dropout layers (for regularization), σ is

the Sigmoid Linear Unit (SiLU) activation function, and the

operator ◦ is function composition. The blocks B1 and B2

are followed by a fully-connected functional block B3,

B3 = Drop33 ◦ σ ◦ Dense33 ◦ Drop32 ◦ σ ◦ Dense32 ◦
Drop31 ◦ σ ◦ Dense31 ◦ Vec

(3)

where Vec vectorizes its input into a 1D vector, and

Dense are fully-connected layers. Finally, the output block

B4 = Dense41 contains a single dense layer. The hyperpa-

rameters of each block’s layers as well as the transformation

of the data along the architecture are indicated in Fig. 7.

B. Data Preprocessing

Within our image data, the regions that are more pertinent

and crucial are those containing information about the torch

flame or heat pool. Accordingly, regions within the image

that are relatively brighter are of higher interest, whereas

those that are relatively dimmer contain information that is

less relevant to our task, i.e., noise. For these reasons, we

process the input images (Fig. 6) using thresholding to nullify

regions of low interest. At the same time, the thresholding

must preserve the desirable bright regions in the image. For
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Fig. 7. The architecture of our neural network. Our model is composed of two convolutional blocks (blue and green), one dense block (orange), and
one output block (red). The respective hyperparameters of each block are indicated therein and the state of the data (channels, rows, and columns) are
displayed along its mappings between layers. The stride of all convolutional layers is (1, 1). All activations are Sigmoid Linear Unit functions.

instance, binary-thresholding (resulting in a binary image)

would lose much of the essential information in the bright

regions required to reliably discriminate between scenarios.

As such, we adopt a one-sided channel-wise thresholding

method as specified in the procedure ProcessImage below.

define ProcessImage(image X) :

(αR, αG, αB) ← (175, 150, 225)
for each channel c ∈ {R,G,B} do

for each pixel (i, j) ∈ Xc do
if Xc[i, j] < αc then Xc[i, j] ← 0

return X

In each individual channel c ∈ {R,G,B}, the pixel

values are zeroed when they fall below the thresholds αc,

and unchanged otherwise. By performing exploratory data

analysis on the training data, we determine the threshold

values (175, 150, 225) to sufficiently eliminate noise while

preserving relevant information. We note that thresholds

are applied channel-wise since the proportion of noise is

different across channels, motivating distinct values for αc.

VI. TRAINING & EVALUATION

We delineate our model’s training and evaluation below.

A. Model Training and Data Augmentation

Our dataset comprises of 50 experiments recorded at

different times-of-day. We split our data into training and

testing sets experiment-wise, i.e., we consider 38 recorded

experiments for training and 12 for testing, yielding a train-

test split of around (78%, 22%) or (111745, 30926) images.

Through this mutually-exclusive sampling from experiments,

we emphasize the learning of key features in the torch flame

and heat pool across all experiments and discourage the

model from learning the noise, conditions, and background

effects unique to each experiment. Additionally for training,

we sample our experiment sets across the range of times-

of-day to train the model on varied ambient conditions

(e.g., lighting, temperature) that are affected by the time-

of-day. To further increase our model’s robustness against

noise in our dataset, we apply several randomized techniques

for augmenting our training data. Specifically, we introduce

subtle variations in the images by randomizing the following

image parameters: shearing, brightness, contrast, saturation,

and Gaussian blurring. During training, we minimize the

empirical risk as in minθ
1
N

∑N
k L[yk, f(Xk,θ)] where L is

the categorical cross-entropy loss function, N is the number

of training samples, Xk is the kth training input, and yk is
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Fig. 8. Confusion matrices of the model’s prediction on the test dataset.
The diagonals indicate the correct predictions whereas the off-diagonal terms
indicate misclassifications. Red, yellow, and green cells indicate label-wise
concern that is major, minor, and negligible respectively. Left: The matrix
is expressed with absolute count. Center: The matrix is expressed relative
to the true label totals (row-by-row), thereby showing class recall on the
diagonal. Right: The matrix is expressed relative to the predicted label totals
(column-by-column), thereby showing class precision on the diagonal.

its true label. While there are many suitable optimization

methods [29] for this minimization problem, we use the

adaptive moment estimation (Adam) algorithm [30].

B. Model Testing and Evaluation

After testing on the 12-experiment test set, we evaluate

our model to assess its output’s validity and coherence with

our modeling assumptions. Our evaluation metrics for this

state classification task are overall model accuracy (Table III)

both on the entire test set and its individual experiments, as

well as the confusion matrices (Fig. 8) showing class-wise

prediction count, recall, and precision. We thus assess our

assumption that the task states {TF, PP, CP, NA} are visually

distinguishable in our dataset, which would be reflected as

sufficiently large diagonal terms in the confusion matrix.

C. Results and Discussion

In general, our model performs reliably, achieving an over-

all accuracy of 93.814% (Table III). Moreover, its accuracy

on individual test sets ranges from 88.725% and above,

and lies within [90.574%, 96.665%] for two-thirds (8/12) of

them. In particular, it distinguishes the NA class quite well

(with a precision of 98.2% and a recall of 95.9%) despite

its intra-class variation (see Fig. 5) suggesting that it can

confidently identify anomalous conditions during cutting.

We study the misclassfications (Fig. 8) of concern deemed

major (red, 2% or more), minor (yellow, within [0.5%, 2%)),
and negligible (green, less than 0.5%) expressed relative

to the true label totals (center matrix) and predicted label

totals (right matrix). Major concern occurs mainly during

inter-class transitions, for instance, when the cutting task



TABLE III

EVALUATION RESULTS SHOWING THE MODEL’S OVERALL ACCURACY AND CLASS-WISE RECALL AGAINST THE TESTING DATA

Test Set Total Inputs Correct Outputs Model Accuracy TF Recall PP Recall CP Recall NA Recall
S13 312 312 100.00 − − − 100.00
S19 4806 4569 95.069 53.846 100.00 99.242 96.613
S21 2482 2365 95.286 97.541 95.602 94.953 95.210
S25 2909 2581 88.725 100.00 68.916 87.520 97.978
S29 1509 1498 99.271 100.00 − − 99.265
S34 2472 2239 90.574 97.020 77.215 98.535 94.754
S36 2984 2716 91.019 99.539 78.980 97.853 98.361
S38 2321 2060 88.755 95.556 73.849 97.306 90.022
S40 5277 5101 96.665 97.802 99.208 96.097 92.745
S45 2682 2586 96.421 99.689 96.712 98.419 91.605
S47 1532 1426 93.081 97.458 79.076 98.000 97.073
S49 1640 1560 95.122 98.537 90.864 98.792 95.943

OVERALL 30926 29013 93.814 91.276 87.509 96.555 95.910

Note: Class recalls marked with “−” indicate no data instances of the corresponding class in the particular experiment set.

transitions from having a torch flame (TF) to preheating (PP),

or from preheating (PP) to combustion (CP). In addition, the

NA class is concentrated before ignition (no torch flame) and

after combustion (the heat pool and torch flame gradually

extinguish) wherein no dominant element can be identified;

these constitute transitions from NA to TF and from CP to NA.

Confusion during transitions is reasonable since even human

experts struggle to distinguish these transitional images.

More so, our results suggest that each transition should have

its own respective class and thus more refined labeling.
For assessing inference speed, we evaluated our model

on the test set using two representative types of hardware:

a special-purpose GPU (NVIDIA A100 Tensor Core) and

a mid-range consumer CPU (Intel Core i5-5257U). These

respectively represent optimistic and pessimistic estimates

of the inference speed, depending on the deployed model’s

computing hardware. We compute the average time of in-

ferring one image at a time across all test images, resulting

in an average inference time of 1.46 ms (GPU) and 1.25 s
(CPU). In either case, the model’s inference is sufficiently

fast for prompt anomaly detection and safety response.

VII. CONCLUSION

In this work, we develop a task state classifier for im-

proving the safety of automated oxy-fuel cutting. For this,

we curate a labeled dataset by conducting automated cutting

experiments using a 1-DOF robot. Our CNN-based model

is composed of four functional blocks (each containing its

own layers): two convolutional blocks, one dense block, and

one dense output block. We preprocess the inputs using

one-sided channel-wise thresholding to eliminate noise and

preserve the desirable image contents. We train and evaluate

our model and achieve an overall accuracy of 93.814% with

sufficient average inference speed on both a high-end GPU

(1.46 ms) and a mid-range CPU (1.25 s). Nevertheless, our

model struggles with inter-class transitions motivating the

need for more refined classes in future work.
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