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Abstract 

Ribbed plates are common components in aircrafts, ships, and structures. Due to safety 

considerations and proper functioning, it is important to predict the natural frequencies and 

mode-shapes of such systems. There are many analytical, numerical, and experimental 

methods that extract the modal parameters of ribbed plates. However, each present 

advantages and tradeoffs. The aim of this paper is to implement some of the most common 

modeling and experimental approaches, optimize them wherever possible, and compare their 

strengths and weaknesses. The different instances of the analytical model are based on the 

assumed-modes method and differ only their geometric configuration and trial function 

selection, in order to observe the effects of each. The numerical model is a finite element 

analysis of the ribbed plate employing higher-order shear theories. Two experiments are 

performed to validate and optimize the models, and to weigh the benefits of the two common 

setups. An in-depth implementation of the analytical model demonstrates the use of 

parallelization and concurrency, mathematical simplifications, and algorithmic 

improvements in order to optimize performance. The parallelized program is then put 

through algorithmic analysis to estimate its local order of growth and study its running time. 

By comparing the performance, accuracy, simplicity, stability, affordability, and 

parametrization potential of the studied approaches, vibration scientists and engineers are 

able to better select the method suitable for their research, application, or design. 
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1. Introduction 

The reinforcement of plates through the use of ribs arises in diverse and practical engineering 

applications such as those found in the industrial, structural, automotive, aerospace, and 

naval sectors. Ribs are added to modify either the structural behavior of the plate (e.g. 

strengthening) or its dynamical behavior (e.g. offsetting its resonance point). In applications 

where, variable loads are applied to ribbed plates, or when subjected to vibratory motion, it 

is often crucial to perform modal analysis to estimate the natural frequencies and mode-

shapes of the system. Such knowledge enables a more detailed design, taking into account 

safety considerations, which helps prevent high-amplitude vibrations from causing system 

failure. 

There exists a vast number of methods for approximating the natural frequencies and mode-

shapes of ribbed plates. However, they all fall under analytical, numerical, or experimental 

approaches, including a combination of these. Analytical methods include variational 

techniques (Rayleigh-Ritz, Galerkin, assumed-modes, etc.) [1-7] that share global 

characteristics, while one of the dominant numerical approaches remains the finite element 

method [6], facilitated by the advancement of increasingly powerful computers. In parallel, 

certain experimental setups enable the extraction of modal parameters of a measured system. 

Though experimental setups can vary greatly from one instance to another, clear categories 

can nonetheless be drawn. On one hand there are methods that resemble impulse testing [7-

9], whereby embedded accelerometers output signals to be processed using well-known 

algorithms. On the other hand, there are optical methods that make use of Chaldni patterns 

[10] to examine mode-shapes and measure their corresponding natural frequencies. Of 

course, laser vibrometry has emerged as an excellent non-contact approach to vibration 

measurement, but remains out of reach for many researchers on a budget. While great 

research has significantly improved the methods described above, the best approach for any 

given situation is often unclear. Individuals are quick to favor one method over the other 

based on familiarity, but in reality, the optimal approach should depend on the desired 

outcome and the limitations of the problem or application.  

In this paper, common methods for the analytical (assumed-modes), numerical (finite 

element), and experimental (impact hammer, Chladni patterns) will be thoroughly analyzed 
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and compared. The analytical method is formulated with variations in trial function selection, 

and in system configuration, based on those currently found in the literature [11-15]. The 

effects of each on the modal results are examined. Thorough implementation details will be 

given, as well as multiple performance optimizations (parallelization and concurrency, 

mathematical simplifications and algorithmic improvements). Moreover, an algorithmic 

analysis on the analytical implementation is performed to estimate the local order of growth 

of its running time. For the numerical approach, both formulation and implementation details 

are provided for a fair comparison against the analytical models. Finally, two separate 

experiments are performed on a dedicated aluminum ribbed plate fabricated to closely match 

the mathematical models. The setups for the impact hammer test and the Chladni pattern 

method are outlined in detail and their respective advantages and limitations are highlighted. 

These experiments not only demonstrate common experimental modal analysis techniques, 

but also provide a benchmark against which the mathematical models can be compared and 

validated. Finally, the various methods are compared in terms of accuracy, performance, 

stability, simplicity, ease of parametrization, and affordability where applicable. The resulting 

data will prove to be useful to vibration scientists and engineers in evaluating the appropriate 

method best suited for their research, application or design problem. 

2. Models and Methods 

The objective is to perform modal analysis to determine the natural frequencies and mode-

shapes, of a rectangular ribbed plate. Three main approaches present themselves, each with 

their own methods: numerical simulations (the finite element method), analytical modeling 

(approximate methods and variational techniques), and experimental verification 

(performing physical measurements to determine vibrational modal outputs). 

2.1. System description 

2.1.1. Plate parameters 

The geometrical parameters of the plate are shown in Fig. 1.1 where �, �, and ℎ are the length, 

width, and thickness of the base plate, respectively. �� and ℎ� are the length and thickness of 

the rib, respectively. The starting and ending abscissa of the rib are �� = (� − ��)/2 and  

�� = (� + ��)/2, respectively. Additionally, the material properties are: Poisson’s ratio �, Young’s 

modulus �, and the volumetric mass density �. 
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Fig. 1. Geometrical parameters of the ribbed plate and modeling configurations. 

2.1.2. Common assumptions 

It is assumed that the modeled plate is perfectly simply-supported. However, corresponding 

plates in engineering applications have mixed boundary conditions (between simply-

supported and clamped). Moreover, since damping is neglected, the system is considered to 

be conservative. Effectively, since the study seeks no further than the first five natural 

frequencies, then dissipative effects are small and become considerable only at higher 

frequencies. Finally, the material used is assumed to be isotropic. 

2.2. Numerical model 

The finite element method (FEM) model is formulated and simulated on COMSOL 5.1 and is 

the most developed model in terms of complexity. It uses higher-order shear deformation 

theories well-described in [16]. The formulation uses the Cartesian coordinate system (�, �, �) 
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whose origin is the centroid of the base plate and where � is the direction normal to the 

surface of the plate. 

2.2.1. Base and augmented models 

The governing dynamic equation used to extract the natural frequencies � is 

−���� = ∇ ⋅ � + � + 6(� × !) �
ℎ� (1) 

Where � is the mid-surface linear displacement vector, � the Second Piola-Kirchhoff stress 

tensor, � and � the net force and moment vectors, and ! the normal unit vector. 

The bending ��, membrane �#, and shearing �$ parts of the stress tensor � can be expanded as 

follows: 

�� = �% + �&'( + �) + ℎ
2 * (+ − +%) (2) 

�# = �% + �&'( + �) + * (, − ,%) (3) 
�$ = �% + �&'( + �) + 2./ (0 − 0%) (4) 

Where �% is the initial stress, �&'( the external stress, �) the deviatoric stress, * the elasticity 

matrix (whose terms are functions of � and �), / the modulus of rigidity, . = 5 6⁄  the shear 

correction factor, + the element covariant membrane tensor,  , the element covariant bending 

tensor, 0 the element covariant transverse shear, and {+%, ,%, 0%} their initial values.  

Simply supported boundary conditions are added using the four equalities {� ⋅ ! = 6, � ⋅ 7 =
6, � ⋅ (7 × !) = 6, 7 ⋅ 8 = 6} where 7 is the tangent unit vector and 8 the displacement of shell 

normals. In addition, the in-plane stress is �9:;<=:& = �# + ��� and �� = 0 for − ℎ 2⁄ ≤ � ≤ ℎ 2⁄  

In order to better match the impulse hammer experimental configuration discussed below, 

two point-masses are added in the locations of the two accelerometers used on the plate. This 

augmented model is used to match the experiment, while the base model is used to obtain 

values without the addition of accelerometers. The force and moment added by each 

accelerometer of mass #��� are ���� = (@ A − �)�#��� � and ���� = (@ A − �)�B C, where C = ! × 8 

is the angular displacement vector, A the mass damping parameter, B the mass moment of 

inertia matrix, and @ the imaginary number. 
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2.2.2. Discretization 

The model uses triangular shell elements in a quadratic displacement field. Both the 

displacement field and the displacement of shell normals are complex-valued. The system 

uses an adaptive mesh, as in Fig. 2, with a maximum element size of 4.12 ⋅ 10−E m, a minimum 

element size of 1.55 ⋅ 10−G m, a maximum element growth rate of 1.2, a curvature factor of 0.25, 

and a narrow region resolution of 1. The mesh gets increasingly finer near the rib, where the 

effects have a higher impact on the results. 

 

Fig. 2. Discretization of the plate using an adaptive mesh. 

 2.3. Analytical models 

The analytical models exploit a symbolic approach for obtaining the natural frequencies and 

mode-shapes of the plate. The assumed-modes method (AMM) is used and is well-formulated 

in [17]. AMM was chosen because it allows using: (1) energy formulations of the model that 

abstracts away geometrical complexities, (2) flat plate and beam solutions and their 

corresponding mode-shapes as the fundamental elements (individual trial functions) of the 

analytical solutions, and (3) a constructed global solution as opposed to the dispersed local 

solutions provided by FEM. The advantage and flexibility of AMM lies in its parametric and 

symbolic solutions, which enables the modal analysis of plates with changing parameters and 
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rapid numerical solutions. Its elegance consists of solving the governing PDEs only once, and 

producing a reusable multivariate solution. The system can be modeled using three different 

approaches, whereas the rib is modeled as either: (1) a taller section of the base plate (Rib ⊂ 

Plate, Fig. 1.2), (2) a superimposed flat rectangular plate (Rib ≡ Plate, Fig. 1.3), and (3) a 

superimposed flat rectangular beam (Rib ≡ Beam, Fig. 1.3). Additionally, since a variational 

approach will be used, the choice of trial functions (harmonic or polynomial) will be 

important. 

2.3.1. Model assumptions 

Kirchhoff–Love plate theory is used and is developed based on specific assumptions: (1) 

straight lines orthogonal to the mid-surface pre-deformation remain straight post-

deformation, (2) straight lines orthogonal to the mid-surface pre-deformation remain 

orthogonal post-deformation, and (3) plate thickness is constant throughout deformation. To 

be clear, the mid-surface curvature starts null and must end null after deformation, i.e. the 

��-planar cross-section of the plate at exactly half its thickness must restore to its flat shape 

after deformation. In simpler terms, these assumptions require linear elastic deformation, 

valid in thin plates subject to relatively small forces. In fact, the model was adjusted to 

experiments performed on a plate with small thickness-to-width ratios, and which was 

subjected to forces no greater than 100 N. Since deflections are small compared to the 

thickness, the normal, transverse, shear, and torsional stresses are neglected. These 

assumptions enable practical use of the model but induce noticeable errors near the thicker 

ribbed region.  

2.3.2. General formulation 

The end-goal of the analysis is to obtain the modal parameters: the natural frequencies J and 

mode-shapes K. To make this possible, certain preliminary definitions are required. 

The transverse displacement L (M, �, �) is defined as a weighting function, composed of 

individual trial functions N@,O (�, �) as weights to the generalized coordinates P@,O (M). 

L (M, �, �) = Q Q N@,O (�, �)
R

@ = �
⋅ P@,O (M)

R

O = �
(5) 
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The preset index R controls the number of individual trial functions used, the result of which 

is R� trial functions (R trial functions in each of the � and � directions). As part of calculus of 

variations, more trial functions generally improve the accuracy of the solutions, since most 

variational methods converge to exact solutions as the input R grows asymptotically. This is 

particularly true with the assumed-modes method.  

The formulation assumes an arbitrary form for the individual trial functions. In effect, the 

different options (harmonic, polynomial, combined) will have a significant impact on the 

model behavior. 

The continuous system is described by generalized coordinates P@,O (M) both in matrix or vector 

forms, 

S = TP@,OU� ≤ @,O ≤ R ∈ ℝR×R    ⟹    Y = vecTS]U = (P@)� ≤ @ ≤ R^ ∈ ℝR^ (6) 
and by the mass and stiffness matrices of the system. 

� = T#@,OU� ≤ @,O ≤ R^ ∈ ℝR^×R^          _ = T`@,OU� ≤ @,O ≤ R^ ∈ ℝR^×R^ (7) 
Essentially, it is known that the desired modal outputs (natural frequencies and mode-

shapes) are obtained by solving the generalized eigenvalue and eigenvector problems: 

⎩⎪⎪⎨
⎪⎪⎧det(_ − h �) = 0 (_ − h �) i = 0 (8) 

Where h ∈ ℝR^×R^
 and i ∈ ℝR^×R^

 are the eigenvalue and eigenvector matrices, respectively, 

and are used to compute the natural frequencies J and mode-shapes K. 

The natural frequency vector is simply the square root map of the eigenvalue matrix’s 

diagonal. 

J = T√l@,@U� ≤ @ ≤ R^ ∈ ℝR^ (9) 
The mode-shapes vector contains linear combinations of individual trial functions, 

K = i n = To@(�, �)U� ≤ @ ≤ R^ = ⎝⎜⎜⎜⎜⎜
⎜⎜⎜⎛Q �@,O N@(�, �)

R^

O = � ⎠⎟⎟⎟⎟⎟
⎟⎟⎟⎞

� ≤ @ ≤ R^
∈ ℝR^ (10) 
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where the trial functions vector n is obtained from the trial functions matrix. 

n = vec vTN@,OU� ≤ @,O ≤ R
] w = (N@)� ≤ @ ≤ R^ ∈ ℝR^ (11) 

With the preliminaries defined, the Euler-Lagrange equation offers an energy description of 

the system, 

d
dM xy�

yẎ{ − y�
yY = | ⟹ d

dM xy}
yẎ{ + y~

yY = 6 (12) 
where � = } − ~  is the Lagrangian, subtracting the kinetic energy }  from the potential energy 

~  of the system and | = (�@)� ≤ @ ≤ R^ ∈ ℝR^
 is the external load factor. Here, the system assumes 

free vibration and as such | = 6. The mathematical context of these variational techniques is 

elaborated in [18]. 

The equation reduces to �Ÿ + _Y = 6 and can be rewritten as: 

d
dM �� + �� = 6 ⇔ x�� = y}

yẎ = �Ẏ{ ⋀ x�� = y~
yY = _Y{ (13) 

Or in matrix form, since the P@,O (M) in Eq. (6) are initially formed using matrices, rewritten as: 

d
dM �� + �� = 6 ⇔ ��� = y}

yṠ = �Ṡ� ⋀ ��� = y~
yS = _S� (14) 

The mass and stiffness elements are obtained as follows. First �� and �� are developed by 

differentiating the potential and kinetic energies with respect to every generalized 

coordinate P and its first time-derivative Ṗ, respectively. Second, these matrices are vectorized 

into �� and �� which contain linear combinations of the desired coefficients #@,O with ṖO and `@,O 
with PO. Finally, with �� and �� made explicit, the coefficients #@,O and `@,O are extracted to 

populate the matrices � and _, respectively. Mathematically, this is written as: 

�� = x y}
yṖ@,O{� ≤ @,O ≤ R

 ∈ ℝR×R     ⟹    �� = vecT��]U = ⎝⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎛
Q #@,O

R^

O = �
⋅ P�̇  (M)⎠⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟
⎞

� ≤ @ ≤ R^
∈ ℝR^ (15) 
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�� = x y~
yP@,O{� ≤ @,O ≤ R

∈ ℝR×R    ⟹    �� = vecT��]U = ⎝⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎛
Q `@,O

R^

O = �
⋅ PO (M)⎠⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟
⎞

� ≤ @ ≤ R^
∈ ℝR^ (16) 

This formulation is optimized for computer algebra systems, which first develop �� and ��, 

then vectorize them into �� and ��, and finally extract � and _. 

With the common procedures set in place, the plate can be parametrized so that the model’s 

three configurations can each provide their own kinetic and potential energy definitions.  

For compactness, the potential energy integrand �~ (M, �, �) is defined as: 

�~ (M, �, �) = TL�� + L��U� + 2 (1 − �) ⋅ TL��� − L�� L��U (17) 
Where the subscripts denote partial derivatives in the given direction, as per standard 

notation. 

All equations up to this point are common to all ribbed-plate configurations. The general 

formulation treats the kinetic and potential energy of individual plate sections as known. 

However, the details of each of the three configurations considered are provided as follows. 

2.3.3. Configuration 1: Rib ⊂ Plate 
The kinetic energy of the system is evaluated as the superposition each section of the plate 

(Fig. 1.2). 

} = 1
2 x� � �� ⋅ L̇� d� �

%  d� ��
% + � � �� ⋅ L̇� d� �

%  d� �^
��

+ � � �� ⋅ L̇� d� �
%  d� �

�^
{ (18) 

Where �� = �ℎ and �� = �(ℎ + ℎ�) are the area mass densities of each section. 
Likewise, for the potential energy. 

~ = 1
2 x� � )� ⋅ �~  d� �

%  d� ��
% + � � )� ⋅ �~  d� �

%  d� �^
��

+ � � )� ⋅ �~  d� �
%  d� �

�^
{ + ~� (19) 

Where the flexural rigidities are given as: 

)� = � ℎE
12 (1 − ��)          )� = � (ℎ + ℎ�)E

12 (1 − ��) (20) 
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The term ~� is only added for generality. It corresponds to the elastic potential energy of the 

hypothetical massless springs present at the plate boundaries. The existence of these springs 

will depend on the type of trial functions used. Unless the penalty method is used, then ~� is 

null. The different cases will be elaborated upon in section 2.3.6. 

2.3.4. Configuration 2: Rib ≡ Plate 

This configuration treats the rib as another rectangular flat plate placed on top of the base 

plate (Fig. 1.3).  

The kinetic energy of the system is evaluated as a superposition of both the base and top 

plates. 

} = 1
2 x� � �� ⋅ L̇� d� �

%  d� �
% + � � �� ⋅ L̇� d� �

%  d� �^
��

{ (21) 

Here �� = �ℎ and �� = �ℎ�. 
Likewise, for the potential energy.  

~ = 1
2 x� � )� ⋅ �~  d� �

%  d� �
% + � � )� ⋅ �~  d� �

%  d� �^
��

{ + ~� (22) 

Here the flexural rigidities are 

)� = � ℎE
12 (1 − ��)          )� = � ℎ�E12 (1 − ��) (23) 

2.3.5. Configuration 3: Rib ≡ Beam 

This configuration models the rib as a beam placed on top of the base plate (Fig. 1.3). 

The kinetic energy of the system is evaluated as a superposition of both the base plate and the 

top beam. 

} = 1
2 x� � �� ⋅ L̇� d� �

%  d� �
% + � �� ⋅ L̇ �M, �

2 , ���  d� �
% { (24) 

Here �� = �ℎ and �� = �ℎ�. 
Likewise, for the potential energy. 
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~ = 1
2 x� � )� ⋅ �~  d� �

%  d� �
% + � ��� ⋅ L�� �M, �

2 , ���  d� �
% { + ~� (25) 

Where �� = ��ℎ�E / 12 is the rib’s second moment of area. 

2.3.6. Trial functions 

Harmonic trial functions are the natural choice for simply supported boundary conditions, 

being the exact solution of the mode-shapes for rectangular flat plates. Since the rectangular 

ribbed plate is essentially a mutated flat plate, assuming harmonic functions serve as 

powerful elementary blocks and are conceptually a “good guess”. Since no penalty method is 

used to provide simply supported boundary conditions, then ~� = 0 as there is no need for 

hypothetical springs. Harmonic trial functions can be used as: 

N@,O(�, �) = sin �� � @
� � sin �� � O

� � (26) 
Penalty methods, detailed in [17], are an interesting alternative of providing more flexibility 

in the definition of the boundary conditions and a way to increase computational efficiency 

by using simpler trial functions. The task is to model the plate with free edges sporting 

massless springs of preset stiffness `. By setting |`| to be very large (e.g. of order ��%), the 

springs become stiff enough to simulate simply-supported boundary conditions. It is 

important to note that the magnitude must be large, but ` is generally taken to be negative. 

Another crucial note is that penalty methods suffer from numerical instability. It is expected 

that the model can behave erratically for increasing values of R and for larger frequencies. 

Polynomial trial functions offer the greatest improvement in efficiency being computationally 

simple (i.e. are easy to manipulate, differentiate, integrate, etc.). Individual trial functions can 

be defined as bivariate polynomials: 

N@,O(�, �) = ��
��@ − � ��

��O − � (27) 
The massless (no kinetic energy) springs must be provided for as potential energy, such that 

~� = 1
2 � ` �L�(M, 0, �) + L�(M, �, �)� )� �

% + 1
2 � ` �L�(M, �, 0) + L�(M, �, �)� )� �

% (28) 
2.4 Experimental modal analysis 
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To calibrate the analytical and numerical models, validate their correctness, accuracy, and 

precision, and optimize them to reality as closely as possible, there was a need to acquire real-

world data on a physical ribbed plate. A rectangular ribbed plate was fabricated on which 

experiments could be carried out. The selected material was 6061-T6 aluminum alloy for its 

availability and ease of machining. While aluminum can exhibit anisotropic behavior, it is 

sufficiently isotropic for the purpose of modal analysis of small deflections. Indeed, its 

properties are much more homogenous when compared to other common materials such as 

wood. An analog milling machine was used to reduce a thick rectangular slab of the alloy into 

a thin ribbed plate. The ribbed plate was dimensioned to (�6�. 66 × ���. 66 × �. ��) ��� for the 

base plate, and to (�. �� × ���. 66 × �. �6) ��� for the rib. Two separate modal analysis 

experiments were carried out: the impulse hammer experiment, and the Chladni pattern 

method. Each has its own benefits and inconveniences, as will be compared in the results. 

Both experiments require fixing the plate, using Seal ’N Peel removable sealant, with as 

minimal plate-frame contact as possible. This is to reduce clamping effects and to approach 

simply-supported boundary conditions. A description of the experimental plate setup is 

provided in Fig. 3 and Table 1. 

2.4.1. Impulse hammer modal testing 

With the plate and frame properly set up, the impulse test consists of impacting the plate 

surface and measuring both the impact force using a load cell and the response using 

accelerometers. The signals are then fed through a signal conditioner and DAQ device into a 

computer for processing and modal extraction. 

Table 1 
Items used in the experimental setup of the impulse hammer test. 

Item Specifications 

(1) Sealant Gun Reduces plate-frame contact and minimizes clamping effects. 

(2) Glue Gun Fixes the accelerometers on the plate surface. 

(3) Accelerometers PCB PIEZOTRONICS INC. Model 352C22 SN LW244026. 

(4) Plate and Frame Simply-supports the plate and fastened with a wrench. 

(5) Impact Hammer KISTLER Model 9928 – Provides impacts and measures the force. 

(6) Signal Conditioner PCB PIEZOTRONICS INC. Model 482C Series. 

(7) Power Supply/Coupler KISTLER Type 5114 – Powers hammer and outputs signal. 

(8) Multifunction I/O Device NI USB-6212 – DAQ outputs to computer for processing. 
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Fig. 2. Experimental setup for the impulse hammer test. 

2.4.2. Ideal impulse hammer setup 

Identifying the ideal setup required experimenting with various controlled parameters: 

boundary conditions (amount of sealant), angle and intensity of impact, pattern of impact 

(single versus multiple hits), and accelerometer positioning. After experimenting with varied 

setup parameters across 10 different trials, the ideal conditions for recording the impacts 

were identified. The plate should be fixed onto the frame with generous amounts of sealant, 

but not enough to leak onto the plate surface. This reduces clamping and is closest to simply-

supported boundary conditions. A simple way to check correct fixture of the plate is to tap its 

surface and judge its sound and feel. It must not make metal-to-metal contact with the frame, 

but should flex freely. The hammer should have a perfectly orthogonal impact angle and the 

force range should be restricted from 25 to 65 N. The accelerometers should be placed at the 

(1/4, 1/4) and (3/4, 3/4) of the overall plate dimensions. This ensures that they avoid nodal lines 

of the mode-shapes of interest. Strikes should be single hit, at (3/4, 1/4) and (1/4, 3/4) of the 

overall dimensions, bi-opposite to the two accelerometers. Fig. 4 demonstrates the correct 

accelerometer (+) and impact (×) positions on the ribbed plate. These routines ensure the 

cleanest recording. 
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Fig. 3. Ideal positions for accelerometer placement (+) and hammer impact (×). 

2.4.3. Impulse hammer signal processing 

The DAQ is interfaced with MATLAB for real-time data recording, signal processing and 

isolation. Each of the accelerometer and impulse hammer signals should be isolated. The 

script uses logarithmic decrements for modal analysis, converting impulse and accelerations 

into natural frequencies. To compute the modal parameters, the Least-Squares Complex 

Exponential (LSCE) algorithm was found to be best suited for this experiment. This method is 

well-explained in [19] and is a natively available argument in MATLAB. It was also found to 

be more accurate to process displacement rather than acceleration. The window size (range 

of data points recorded on impact) must be optimized to obtain the cleanest results. A total 

of 100 data points was recorded. To avoid common recording mistakes: (1) ensure the load 

sensor is placed correctly on the impulse hammer, (2) verify by touch and sound that the plate 

is properly simply-supported, (3) test various window sizes, settings, and thresholds until the 

best combination is found, (4) when averaging, correctly reparse the @-th frequencies as they 

are generally not recorded sequentially. 

2.4.4. Chladni pattern method 

Starting from the same plate-frame setup, finely divided material, such as cake sprinkles, are 

sprinkled on the plate, under which is placed a sufficiently-powerful sound emitter. 

Computer-generated sine waves are amplified and emitted below the plate, which vibrates 
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and displaces the sprinkles. The speaker, placed at 3 mm from the underside of the plate 

measured from the top of its peripheral, emits sound at 40 W. A receiver measures acoustic 

sound intensity while the sine wave frequencies are swept. A natural frequency is reached 

when the receiver displays a local maximum value and when the sprinkles assume a Chladni 

pattern. These patterns expose the different mode-shapes by allowing the sprinkled material 

to accumulate at the nodal lines. The setup is described in Fig. 5 and Table 2. 

 

Fig. 4. Experimental setup for the Chladni patterns test. 

Table 2 

Items used in the experimental setup of the Chladni patterns test. 

Item Specifications 

(1) Signal Amplifier BOGEN Classic C60 Amplifier - 60 W RMS. 

(2) Acoustic Earmuffs Protects the subject from the loud generated sounds. 

(3) Cake Sprinkles Moves along with the mode-shapes being light and non-adhesive. 

(4) Plate and Frame Joined using a removable sealant and fastened with a wrench. 

(5) Sound Receiver EXTECH HD600 Datalogging Sound Level Meter. 

(6) Sound Emitter Diameter 5.5", nominal 50 W, maximum 120 W, impedance 8 Ω. 
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3. Results 

3.1. Plate parameters 

The parameters used in all the models described in section 2 were those of the physical plate 

used in the experiments. The geometric dimensions and the material properties of the ribbed 

plate are listed in Table 3. All derived parameters can be obtained from the listed inputs and 

are thus omitted. Material properties of 6061-T6 aluminum alloy are obtained from [20]. 

Table 3 

Geometric dimensions and material properties of the ribbed plate. 

Parameter Values 

� Plate length (m) 2.06 ⋅ 10−� 
� Plate width (m) 1.86 ⋅ 10−� 
� Young’s modulus (Pa) 6.89 ⋅ 10−�% 
ℎ Plate thickness (m) 2.15 ⋅ 10−E 
ℎ� Rib thickness (m) 7.40 ⋅ 10−E 
` Massless springs stiffness (N m−�) − 1.00 ⋅ 10�% 

�� Rib length (m) 4.36 ⋅ 10−E 
� Volumetric mass density (kg m−E) 2.70 ⋅ 10−E 
� Poisson’s ratio 3.30 ⋅ 10−� 

 

3.2. Experimental results 

In the impulse hammer test, 100 data points were recorded, processed, and then averaged to 

yield the first five natural frequencies (�) and their corresponding damping ratios (0). All 

averages and corresponding standard deviations are listed in Table 4. In addition, the Chladni 

pattern method measured the first four natural frequencies, included in the same table. 

Table 4 

Natural frequencies and damping ratios obtained from the impulse hammer and Chladni patterns tests. 

Experiment 1 2 3 4 5 

�9̅§;¨<©& (Hz) 356.6 680.9 1,056 1,158 1,226 

�� 2.423 3.049 2.855 2.652 2.559 

09̅§;¨<©& 0.0545 0.0418 0.0194 0.0580 0.0272 

�0 0.0410 0.0302 0.00727 0.0310 0.0121 

�¬­<=®:9 (Hz) 355.0 680.0 1,062 1,156 − 
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3.2.1. Measurement errors 

The plate dimensions � and � were measured with an error of ±0.5 mm equivalent to a relative 

error of approximately ±0.25%. Since accelerometer measurement errors depend on too many 

factors, error bounds are difficult to quantify. However, it is possible to estimate an upper 

bound for the total error. In the impulse hammer experiment, even though the high-precision 

sensors were designed to produce highly-accurate results, they still required calibration. The 

calibration for both the hammer load sensor and the accelerometers carried some error.  

Moreover, the signal processing, while highly-optimized, also carried its own errors. In the 

Chladni pattern experiment, the room for error was much greater mainly because the 

measurement devices used were less precise and less accurate. Additionally, this experiment 

requires error-prone human readings of patterns to identify when resonance has been 

achieved. Using conservative estimates, the frequency values given by the impulse hammer 

experiment exhibit no worse than ±1% relative error, while those for the Chaldni pattern 

experiment are deduced relative to the impulse hammer test in Table 10. 
3.3. Numerical model results 

The FEA base model simulates the ribbed plate as is, while the augmented model adds two 

point-masses accounting for the weights and locations of the accelerometers on the plate, as 

in Fig. 4. These added masses have the effect of lowering the natural frequencies. Results for 

the models are listed in Table 5.  

Table 5 
First six natural frequencies obtained from base and augmented FEA models. 

FEA Model �� (Hz) �� (Hz) �E (Hz) �± (Hz) �G (Hz) �² (Hz) 
Base 357.7 684.3 1,064 1,169 1,229 1,905 

Augmented 356.9 681.1 1,056 1,158 1,226 1,900 

 

In addition, the mode-shapes for the base model are provided in Fig. 6. While these were 

obtained from the FEA model, they remain the same for all models discussed herein. 
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Fig. 6. First six mode-shapes of the ribbed plate obtained from the FEA base model. 

3.4. Analytical model results 

The first six natural frequencies using harmonic trial functions are listed in Table 6, with an 

increasing number R� of trial functions for different configurations. 
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Table 6 

First six natural frequencies for different numbers of trial functions obtained from the three configurations. 

Config. R R� �� (Hz) �� (Hz) �E (Hz) �± (Hz) �G (Hz) �² (Hz) 

1 

5 25 365.9 822.5 1,093 1,362 1,534 2,035 

10 100 361.2 797.1 1,089 1,294 1,363 1,978 

15 225 359.6 795.9 1,082 1,291 1,296 1,942 

25 625 358.9 794.9 1,077 1,263 1,288 1,929 

2 5 25 322.5 747.6 935.3 1,281 1,477 1,852 
3 5 25 309.5 642.6 935.1 1,095 1,194 1,745 

 

A property of the assumed-modes method is that solution values of frequency will decrease 

as R grows larger, therefore, not only are most of the solutions of configurations 2 and 3 less 

accurate than those of 1, but they will also get worse, as most of them start below those of the 

FEM reference values and will continue to decrease as R grows. Since configuration 1 is proven 

superior, it will be adopted for the remaining AMM results. 

Similarly, the solutions of the polynomial penalty method (using configuration 1) are listed in 

Table 7. The symbol ℂ indicates a rejected complex solution. 

Table 7 

First six natural frequencies for different numbers of trial functions obtained from the penalty method. 

R R� �� (Hz) �� (Hz) �E (Hz) �± (Hz) �G (Hz) �² (Hz) 
5 25 425.7 902.6 1,415 1,639 2,132 2,831 

10 100 370.3 816.8 1,092 1,357 1,725 2,038 

12 144 365.9 815.9 1,092 1,352 1,542 2,036 

13 169 706.4 811.1 1,092 ℂ 1,336 2,053 

15 225 ℂ 807.6 1,092 ℂ 1,337 ℂ 

16 256 333.2 807.2 1,092 1,336 ℂ ℂ 

25 625 813.2 910.8 ℂ ℂ 1,090 1,322 

 

3.5. Analytical model implementation 

The analytical models were implemented on Wolfram Mathematica 11 and Maple 2017. 

3.5.1. Parallelization and concurrency 
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The CPU used is an Intel Core i7-7700 with a clock-speed of 3.60GHz, 4 cores, and 8 logical 

processors. A serial implementation would run only on a single logical processor with idle 

time on variables waiting for prerequisite operations to complete. The Wolfram Language 

contains built-in parallel computing packages that allow the use of multiple Wolfram Kernels, 

i.e. multiple instances of Mathematica, to complete tasks concurrently and in parallel, fully 

exploiting the CPU. Using these built-in functions, the entire model is programmed in a 

parallel structure, outlined in Fig. 7. The grouped rectangular blocks run concurrently, while 

the circular ones are run necessarily in series. Each block is parallelized, when possible, across 

the 8 kernels. Conditional logic manages blocks to wait for prerequisite variables to complete 

evaluation. The result is the dependency network shown as the color-coded branches. The 

green blocks indicate the sequence taken to evaluate the elastic potential energy, and is 

skipped when the penalty method is not used. After migrating to a parallel structure, CPU 

usage went from 16% to 100% across all logical processors. Common strategies for 

parallelization and concurrency are outlined in [21]. 

 

Fig. 7. Parallel and concurrent structure for the analytical model implementation. 

3.5.2. Performance optimization 

Optimizations in the parallel implementation are of two types: either mathematical 

constraints and operational simplifications, or faster algorithms for computationally-

demanding mathematical operations. In the first type, constraining the model to the real 

domain skips the unnecessary computation of complex solutions, if detected. Moreover, 

computer algebra systems (CAS) software often have their own subroutines for symbolic 

integrations, which if the form of the integral is known, are futile checks. Since real 

elementary functions are being integrated in real domains, the second fundamental theorem 

of calculus suffices. Antiderivatives Ψ(M) of functions µ(M) are first computed, and then set to 
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be evaluated at the integration bounds giving ∫ µ(M) dM = Ψ(M�) − Ψ(M�)M^ 
M�

. Additionally, before 

any symbolic integration is carried out, the integrand expressions should be simplified or 

expanded, using the CAS built-in algebraic transformations (e.g. Mathematica’s 

FullSimplify[] and ExpandAll[]). This preprocessing step allows for faster integrations. In 

the second optimization type, by logging the duration spent on every operation, the two 

bottlenecks in the program are found to be the integrations and the eigensystem. Any further 

speedup requires efficient and parallel algorithms for these bottlenecks. For the eigensystem, 

there is an extremely useful property which can be exploited: � and _ are both real-valued 

and symmetric, making them Hermitian matrices. The highly-parallel Lanczos algorithm is 

used to transform the R% × R% Hermitian matrices into R� × R� tridiagonal matrix, where R� ≤
R% ∈ ℕ allowing the approximation of the first R� eigenvalues (best accuracy is achieved for 

R� = R%). The parallel QR algorithm is the principal eigensystem solver, but is not remarkably 

efficient with general matrices running in ΘTREU. However, given symmetric matrices 

preprocessed into tridiagonal form, which is the role of Lanczos iterations, the QR algorithm 

scales linearly in Θ(R). The implementation details of these numerical linear algebra 

algorithms are described in [22]. Finally, the symbolic integrations use the parallel Risch-

Norman (RN) algorithm, being more efficient for transcendental elementary functions (such 

as sin) and especially suitable for trigonometric functions [23]. 

3.5.3. Time complexity 

}(#) is defined as the running time in seconds where the input # = R� is the total number of 

trial functions. The assumed-modes method is implemented as a process amm(N, #) which is 

composed of the numerical process num(#) and the symbolic process sym(N, #). All details 

pertaining to algorithmic analysis are clarified in [24]. By, suppressing constant factors and 

lower-order terms, the slowest symbolic computation sequence affected by the choice of trial 

function � is in the potential energy. The following operation sequence is obtained. 
sym(N, #) ≔ integrate� ∘ square ∘ grad� ∘ sum�(N, #) (29) 

More explicitly, 

sym(N, #) ≔ ¿ Àx y�
y�� + y�

y��{ ⋅ Q Q N@,O(�, �) P@,OÁ
�

d� d�Â (30) 
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Clearly, selecting harmonic functions would apply increased computational weight on the 

model, whereas polynomials would immensely simplify the flow of operations. The running 

time of the symbolic process is }©Ã§,N(#) = 2}9:(&ÄÅ=(&,N(#) + }©Æ¨=Å&,N(#) + 2}ÄÅ=®,N(#) +
2}©¨§,N(#). The remaining operations of amm(N, #), dependent only on #, are in num(#). They 

are a composition of the vectorized (vec) derivative matrix (diff), with the eigensystem 

solution (eigen). The following statements define the processes.  

num(#) ≔ eigen ∘ vec ∘ diff(#) ⟹ }:¨§(#) = }&9Ä&:(#) + }È&É(#) + }®9ÊÊ(#) (31) 
amm(N, #) ≔ num ∘ sym(N, #) ⟹ }=§§,N(#) = }:¨§(#) + }©Ã§,N(#) (32) 

As stated earlier, the QR algorithm runs in linear time, therefore }&9Ä&:(#) ∈ �(#). However, 

the Risch-Norman symbolic integration procedure is proven in [25] to belong to the #P-

complete complexity class. Therefore, no worst-case running time can be deduced. Since, in 

this case, the input is the total number of trial functions, then a superlinear function Ë(#) > # 

is assumed such that }9:(&ÄÅ=(&,N(#) ∈ �TË(#)U. Since integrate(N, #) and eigen(#) are the 

highest-order processes in sym(N, #) and num(#), respectively, then }:¨§(#) ∈ �(#) and 

}©Ã§,N(#) ∈ �TË(#)U. For increasingly larger inputs, the integration procedure is measured to 

be the slowest part of the program. Therefore, }=§§,N(#) ∈ �(max{#, Ë(#)}) = �TË(#)U. There is 

no clear way to formally deduce the worst-case time complexity, but it can be estimated 

empirically. Since the number of trial functions used in practice never reach asymptotic 

proportions, performing a global asymptotic analysis is not crucial. Using benchmarks, it is 

possible to approximate Ë(#) and the local order of growth through empirical analysis. 

Running times were recorded for R ∈ [1, 25] for both the polynomial and harmonic trial 

functions. Table 8 lists the running times when polynomial trial functions are used. 
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Table 8 

Running times of the analytical model polynomial implementation for different numbers of trial functions. 

R # }=§§,;Ð<Ã(#) R # }=§§,;Ð<Ã(#) R # }=§§,;Ð<Ã(#) R # }=§§,;Ð<Ã(#) 
1 1 0.13 8 64 12.05 15 225 118.38 22 484 776.14 

2 4 0.17 9 81 14.34 16 256 160.66 23 529 1,054.89 

3 9 0.45 10 100 20.49 17 289 202.98 24 576 1,443.75 

4 16 1.25 11 121 30.12 18 324 272.04 25 625 2,000.79 

5 25 2.55 12 144 43.27 19 361 351.69 − − − 

6 36 7.21 13 169 61.54 20 400 461.58 − − − 

7 49 8.11 14 196 83.27 21 441 615.33 − − − 

 

The data is plotted in both a linear (Fig. 8) and a log-log graphic (Fig. 9). The red plot is the 

segment-joined list plot of the tabular data and the orange dotted line is its monomial 

regression }Å&Ä,;Ð<Ã(#) = 10−�.ÑÑÑ ⋅ #�.�Ò² (appearing as a linear regression in the log-log plot). 

The blue plot (}Ê9(,;Ð<Ã(#) = 6.650 ⋅ #E.±%% + 22.84) is a polynomial curve fit modified to grow 

faster than the tabulated running time.  

The red plot in the log-log graph appears increasingly linear for larger values of #, which 

suggests that assuming a polynomial profile for it is feasible. This is because polynomials of 

the form }Ó(#) = �% + ⋯ + �Ó#Ó with �Ó > 0 converge in the log-log plot to the oblique 

asymptote log�% }(#) = Ó log�%(#) + log�% �Ó, since lim#→∞ }Ó(#) = lim#→∞ �Ó#Ó. The local order of 

growth is thus assumed to be polynomial with worst-case running time of �(#3.4). 
Similarly, Table 9 lists the running times when harmonic trial functions are used. 

Table 9 
Running times of the analytical model harmonic implementation for different numbers of trial functions. 

R # }=§§,­=Å§(#) R # }=§§,­=Å§(#) R # }=§§,­=Å§(#) R # }=§§,­=Å§(#) 
1 1 0.53 8 64 45.84 15 225 445.78 22 484 3,292.42 

2 4 0.65 9 81 54.40 16 256 653.78 23 529 4,111.42 

3 9 1.75 10 100 81.06 17 289 855.69 24 576 5,746.42 

4 16 5.23 11 121 122.29 18 324 1,064.49 25 625 7,869.55 

5 25 9.83 12 144 172.15 19 361 1,432.21 − − − 

6 36 29.97 13 169 231.48 20 400 1,931.78 − − − 

7 49 33.41 14 196 339.80 21 441 2,480.96 − − − 
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The running times have similar local order of growth patterns regardless of the trial function 

used and can be empirically assumed to be �(#3.4), however the actual running time differs. 

Effectively, the average ratio of the harmonic over the polynomial running times rounds up 

to 4, as shown below. 

�­=Å§ ;Ð<Ã⁄ = 1
25 Q }amm,harm(R2)

}amm,poly(R2) ≈ 4
�G

R = �
(33) 

$­=Å§ ;Ð<Ã⁄ =
⎷⃓
Þ⃓ 1

24 Q x}amm,harm(R2)
}amm,poly(R2) − �­=Å§ ;Ð<Ã⁄ {

��G

R = �
≈ 0.15 (34) 

Since the sample standard deviation is low, it can be empirically assumed that }=§§,­=Å§(R) ≈
4}=§§,;Ð<Ã(R). 
Prior to parallelizing and optimizing, the inefficient serial implementation yielded } ≈ 3 min 

for # = 25 instead of }=§§,;Ð<Ã(25) = 2.55 s and would render the software unresponsive for # =
625 instead of completing with }=§§,;Ð<Ã(625) ≈ 33 min. 

 

Fig. 8. Linear plot of the measured running time (red) and the modified polynomial curve fit (blue). 
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Fig. 9. Log-log plot providing the monomial regression (orange) of the running time (red). 

4. Discussion 

4.1. Comparison of the analytical and numerical models 

4.1.1. Model accuracy 

Let err@(ß) = 100 ⋅  à�ß,@ − �9§;,@à �9§;,@á  be the percent error of method ß relative to the impulse 

hammer experiment reference data, for every @-th natural frequency. Table 10 lists below the 

errors err@(ß) of every model and method in this study, the average error  errâââ(ß), and the error 

standard deviation std(ß). 
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Table 10 

Percent error of the natural frequencies given by each method relative to the impulse hammer results. 

ß  Method err�(ß) err�(ß) errE(ß) err±(ß) errG(ß) errâââ(ß) std(ß) 
FEA Model 0.30 0.49 0.73 0.98 0.21 0.53 0.29 

Analytical (Config. 1, Harmon.) 0.64 16.74 1.99 9.07 5.06 6.70 6.48 

Analytical (Config. 2, Harmon.) 9.56 9.80 11.43 10.62 21.47 12.38 4.59 

Analytical (Config. 3, Harmon.) 13.2 5.62 11.45 5.44 2.61 7.67 4.46 

Analytical (Config. 1, Polynom.) 2.61 18.55 3.41 15.37 8.97 9.78 7.09 

Chladni Pattern Experiment 0.45 0.13 0.57 0.17 − 0.33 0.21 

 

With an average error of less than 1%, the numerical model is the most accurate 

computational approach to determine the natural frequencies. Moreover, it is the only model 

that performs accurate computations for all frequencies, since it has an error standard 

deviation of 0.29. In comparison, all other models tend to determine some frequencies much 

more accurately than others, having large standard deviations, which is justified by the 

disparity in accuracy across different frequencies. Despite its relatively large average error, 

the analytical model using configuration 1 with harmonic trial functions can compute the 

fundamental frequency with only 0.64% error, the third partial with 1.99% error, and the fifth 

with 5.06%. However, it suffers problems with predicting the second and fourth frequencies 

which have considerably large errors. Note that this has nothing to do with odd versus even 

indexed frequencies, as the sixth frequency is within the neighborhood of the one computed 

by the FEA model. Rather, configuration 1 produces large errors for those frequencies which 

have a node line at the location of the rib. This implies that configuration 1 fails to accurately 

model the motion around a node line when a change in thickness occurs, which may be due 

to the limitations provided by Kirchhoff-Love plate theory. The two other configurations 

compute fundamental frequencies less accurately, having large errors of 9.56% and 13.2%. 

However, they seem to be more consistent across all frequencies. Nonetheless, this 

disqualifies them from further analysis in this study, since accurately computing the 

fundamental is an important and primary function of these models. Interestingly, Cho et al. 

demonstrate slightly better results using configuration 3 when using clamped boundary 

conditions, while simply supported results are similar [2-3]. Next, the effect of trial function 

selection on accuracy is compared. There is an expected superiority of harmonic functions 

because they are obtained from the solution of the vibrating flat plate. Moreover, the use of 
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polynomial penalty methods sacrifices accuracy for the sake of performance, and indeed as 

mentioned previously, it performs roughly 4 times faster but at half the accuracy. Using 

configuration 1, it also suffers from large errors in computing the second and fourth partial 

frequencies, similar to using harmonic trial functions. Alternatively, Monterrubio and Ilanko 

provide suggestions for alternative admissible trial functions which may help improve the 

accuracy of the penalty method [26-27]. 

4.1.2. Model stability 

Besides comparing model accuracy, it is important to consider their stability, meaning the 

behavior of their convergence. The numerical model is robust and stable since it converges 

predictably (under adequate simulation configurations), and its errors decrease with 

decreasing mesh size. The analytical model stability will depend mainly on the choice of trial 

function. Selecting harmonic functions ensures predictable and stable behavior. The analytical 

model (configuration 1) in this study using harmonic functions always converges and its 

errors decrease as the number of trial functions is increased. The polynomial penalty method, 

however, exhibits unstable behavior when the number of trial functions is large enough (169 

in this study, as in Table 7). First, the overall trend is that error decreases, but this is not 

deterministic as the error will sometimes sharply increase or even become infinite in the case 

of a complex solution. In fact, using more trial functions may result in an unstable solution at 

higher frequencies, while at lower frequencies there are no guarantees of convergence on 

acceptably accurate solutions. With that being said, the polynomial penalty method must be 

used with caution and must be compared to a stable reference when being designed and 

implemented. 

4.1.3. Model performance 

The numerical model is by far the fastest in computing the natural frequencies, since it 

discretizes the system and produces local solutions, which are then combined. It converges in 

fractions of a second. Certainly, increasingly finer meshes would require much more time, but 

within the scope of modal analysis, such detail is rarely required, and thus the FEA model 

remains the quickest in terms of convergence. 

The analytical model performance, instead, will depend on more than one factor. Most 

importantly, the number of trial functions, which even after using highly-efficient parallel 
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algorithms, result in a local order of growth �(R3.4). This means doubling the number of trial 

functions will increase the running time by a factor of roughly 10.5 times. This is inevitably 

due to the highly demanding symbolic integrations. Moreover, the selection of trial functions 

will highly affect the actual running time, whereas the order of growth remains the same. As 

was previously demonstrated, using polynomial penalty functions render the model 

approximately 4 times faster, at the expense of being roughly 2 times less accurate. 

However, this direct comparison is not entirely fair since the numerical model only generates 

discretized and local numerical solutions for a particular set of parameter values. The 

analytical model instead produces a continuous and global symbolic solution well-suited for 

parametric modification. It is possible to produce parametrized solutions, which can be 

utilized in programs to generate large arrays of data useful for studying the effects of 

individual or multiple parameters. In addition, and with some greater effort, it is possible to 

produce symbolic approximations in the form of parametric functions that could be used to 

create software libraries with pre-packaged symbolic solutions for ribbed plates. In 

comparison, the numerical model necessitates rerunning the simulation every single time to 

obtain the system description for a specific set of parameter values. The only way to run such 

operations programmatically is to perform parametric sweeps available within COMSOL. For 

these reasons, the analytical model does present some parametric advantages over the 

numerical one, despite having a much slower convergence time. 

Finally, it is also important to compare model simplicity in terms of implementation and 

development. The analytical model is fairly complex, requiring the correct application of 

variational techniques for the core function. Moreover, optimizing the performance will 

require at least basic knowledge in parallel computation and the thorough implementation of 

specialized and highly-efficient parallel algorithms from numerical linear algebra. 

4.2. Comparison of the impulse hammer and Chladni pattern methods 

4.2.1. Method affordability 

The impulse hammer experiment requires high-quality instrumentation and data acquisition 

(DAQ) hardware, including interfacing software capable of signal and data processing. 

Replicating the setup used in this study would cost between 4,000 and 5,000 USD. The Chladni 

pattern method is much cheaper to setup, well-under 1,000 USD. 
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4.2.2. Method simplicity 

The method simplicity refers to the ease of setting up the experiment, and of running the 

experiment while also considering special procedures such as safety. The impulse hammer 

setup is fairly demanding, requiring proper fixture of the plate, and the correct connection 

and configuration of instrumentation and DAQ hardware. The most cumbersome part of the 

impulse hammer experiment is the signal and data processing of the accelerometer and load 

sensor outputs. The processing parameters require some trial-and-error sweeps before an 

ideal setting may be found, all of which can take up many hours. In comparison, the Chladni 

pattern experiment does not even require a computer, is fairly simple to setup and operate, 

but does require some safety measures. The sound generator can reach uncomfortable and 

even hazardous sound levels, which would require the added precaution of wearing 

protective hearing equipment. 

4.2.3. Method accuracy 

The impulse hammer method is by far the most accurate in this study, and the most 

repeatable once the setup and processing procedures are within ideal conditions. For these 

reasons, the impulse hammer experimental data has been chosen to be the reference data 

against which all other models and methods are compared. The Chladni pattern method 

achieved impressive levels of accuracy with all errors being well-under 1%. With an average 

error of 0.33% and a standard deviation of 0.21%, the accuracy is outstanding considering the 

cheap cost and ease of setup and operation of the Chladni pattern method. 

4.3. Comparative summary of models and methods 

Tables 11 and 12 summarize the advantages, disadvantages, and tradeoffs of each model or 

method used in this study.  



31 
 

Table 11 
Summary of the advantages and tradeoffs of the studied ribbed plate models. 

Model Accuracy Stability Performance Parametrization Simplicity 

FEA Model ����� ����� ����� �� ����� 

Analytical (Config. 1, Harm.) ���� ����� �� ���� ��� 

Analytical (Config. 2, Harm.) � ����� �� ���� ��� 

Analytical (Config. 3, Harm.) � ����� �� ���� ��� 

Analytical (Config. 1, Poly.) ��� �� ���� ���� ��� 

 

It is important to note that it is difficult to deem one model or method as the inherent best, 

since the constraints of the application will determine the optimal method to select. It is easy 

to see the reasons why the FEA model is generally favored in the field, and especially in 

industry, because it is simply faster, more stable, more accurate, and simpler to implement. 

However, its limitations lead to a trial-and-error modal design approach. 

Table 12 

Summary of the advantages and tradeoffs of the studied experimental methods. 

Method Affordability Simplicity Accuracy 

Impulse Hammer Experiment �� �� ����� 

Chladni Pattern Experiment ���� ���� ���� 

 

It is interesting to note that the Chladni pattern method is powerful when considering its 

costs and simplicity, and therefore can be used as a means to obtain low-frequency 

reference data when the expensive setup of the more reliable hammer method cannot be 

obtained. 

5. Conclusion 

This paper studied various analytical, numerical, and experimental approaches to the modal 

analysis of ribbed plates. Each method was characterized, implemented, and used to output 

its own set of natural frequencies. The assumed-modes method was applied to three different 

model configurations with two cases of trial functions. These different analytical models were 

measured against each other. As numerical packages are widely available as part of 

commercial simulation software, there was a special focus given to the implementation of the 

analytical models. Thorough specifications were given concerning the development, 
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parallelization, and optimization of the analytical package. Performance accelerations were 

achieved by fitting parallel and concurrent programming techniques wherever feasible. 

Mathematical simplifications yielded additional time savings, and high-performance parallel 

algorithms were exploited to reduce bottlenecks in the program. The favored analytical 

configuration was subjected to algorithmic analysis to estimate its local order of growth and 

empirically investigate its running time. The analytical models were directly compared to the 

numerical model, which employed finite element analysis. They competed in terms of 

accuracy, stability, ease of parametrization, and simplicity of implementation. In a similar 

fashion, the experimental modal analysis techniques were compared in their accuracy, cost, 

and ease of setup and operation. This comparative study exposes vibration scientists and 

engineers to possible modal analysis techniques based on their advantages and 

disadvantages, and allows them to select the approach most suitable for their research, 

application or design problem, but also offers a template onto which their specific uses may 

be layered. 
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