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A B S T R A C T
The experimental study of vibrating plates having simply-supported boundary conditions can be difficult to

achieve due to the complexity of preventing translation, but allowing rotation along all boundaries
simultaneously. Only a few methods have been proposed, but all are either time-consuming to set up and
involve customization of the test rig for each plate or do not allow the plate to be reused for other purposes. The
method described in this paper offers a low-cost, simple, accurate and non-destructive way of experimentally
measuring the modal properties of thin, simply supported plates and can be used for quick validations of models
and designs without modification for multiple trials and varying plate properties. The key attributes of this
method include:

� An adjustable sliding support frame which can be made of a distinct material from the plate and which can
accommodate variations in plate geometry and properties without modification.

� Removable flexible sealant applied in a v-groove on the supporting frame which can be easily used to fix and
support the plate according to the simply-supported boundary conditions.

� A low-profile design, which can be used to accommodate most experimental testing methods for determining
modal properties of vibrating plates.
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Specification Table

Subject Area: 
Fig. 1.

Fig. 2. Sliding
Engineering

More specific subject area: 
Mechanical Vibration

Method name: 
Non-destructive and reusable simply-supported plate vibration test method

Name and reference of original method: 
See Additional Information section of the paper

Resource availability: 
N/A
Method details

Materials
� 
Aluminum or steel bar stock for the supporting frame.

� 
Bolts and washers to assemble the supporting frame.

� 
Rubber, foam or silicone vibration isolation pad to place under the supporting frame.

� 
A flat and level surface on which to rest the supporting frame during plate installations and
experiments.
� 
Removable weather stripping sealant (e.g. Mulco/DAP Seal ‘N Peel or LePage No More Drafts, Fig. 1).

Frame fabrication

The frame can be designed to accommodate plates of various sizes. Important features include:
sliding slots to accommodate minor variations in plate dimensions (Fig. 2), a v-groove to support the
plate and limit edge displacements, but which allows edge rotation along its length and width (Fig. 3),
cutouts to accommodate elements which are surface mounted on the plate, if required (Fig. 4), and
 Removable weather stripping sealants.

 slots to accommodate plates of varying sizes.



Fig. 4. Cutout to accommodate surface mounted elements.

Fig. 5. Supporting frame legs to provide airflow and accommodate vibration generators or speakers.

Fig. 3. V-groove supporting the plate with removable sealant beads above and below.

Fig. 6. Sample frame design.
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Fig. 7. (A) flat stationary plate, (B) bent plate due to vibration.
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legs that allow air flow below the plate and which can accommodate vibration generators or speakers,
if required (Fig. 5). A sample frame design is shown in Fig. 6.

Setup

Simply supported boundary conditions require supports which are flexible enough to allow
in-plane shortening during bending, but rigid enough to prevent lateral displacement during rotation
(Fig. 7).

Flexible weather stripping sealant has been found to provide the required stiffness for this purpose
and reduces vibration transmission to the supporting frame. Removable sealants, as shown in Fig. 1,
are also easy to remove between tests and do not damage the plate being tested. Care must be taken
when using plates made of materials that are sensitive to or can be damaged by solvents, as most
removable sealants dry via solvent evaporation. Using a sliding frame, such as the one shown in Fig. 2,
accommodates minor or major differences in plate dimensions during installation of the plate. The use
of a vibration isolating pad between the supporting frame and the table has also been found to help
reduce signal noise. Installation procedure:
1 
Loosen frame support bolts and slide frame to its maximum opening size (Fig. 8).

2 
Apply sealant in the middle of each v-groove (Fig. 9). Enough sealant is applied if sealant is visible on
all edges of the plate, both above and below (Fig. 3). Too much sealant is applied if sealant begins to
extend onto the plate surface.
3 
Align plate with v-grooves in the middle of the opening. If attachments are included, align
attachments with supporting frame cutouts.
4 
Slide two parallel frame supports until they make contact with the plate (Fig. 10), then slide the
opposing two frame supports until they also make contact with the plate (Fig. 11). Apply light finger
pressure on all sides to ensure proper plate contact with the frame. Too much pressure may induce
unwanted compressive stresses in the plate or even cause bending in thinner plates.
Fig. 8. Frame extended to its maximum size.



Fig. 9. Application of sealant in the v-groove.

Fig. 11. Fully supported plate.

Fig. 10. First two edges of frame in contact with the plate.
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5 
Tighten bolts to approximately 9 Nm torque, while ensuring the frame remains perfectly flat.
Tightening should occur progressively by tightening each bolt in a diagonal pattern to ensure even
pressure on the plate. Overtightening of the bolts tends to rotate and misalign the frame elements,
causing the plate to sit poorly in the v-grooves. 9 Nm has been found to hold the frame together
snuggly during testing without loosening. Verify flatness of the frame after tightening.



Fig. 12. Experimental setup for the speaker/Chladni pattern testing method.
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6 
Tap the plate lightly with your finger to ensure that enough sealant has been applied and that no
direct contact is made between the plate and the frame.

The setup can now be used to test the modal properties of simply supported plates using a variety
of excitation techniques, such as a speaker, shaker or impact hammer, in combination with a
visualization and/or measurement method, such as Chladni patterns, accelerometers or a scanning
laser vibrometer. Metal, polymer and composite plates have been tested successfully using this
method. However, the recommended setup might need to be modified to account for other plate
materials. Two simple testing methods are described below.

Procedure

Any number of experimental modal analysis techniques can be used with the setup described
above. Two relatively low-cost techniques that have been used successfully are detailed below.

Testing Method 1: Speaker and Chladni Pattern Method
A speaker is placed at 3 mm below the underside of the plate, measured from the top of its

peripheral, and is set to emit sound at about 40 W. Finely divided material, such as cake sprinkles, are
sprinkled on the plate. Computer-generated sine waves are amplified and emitted below the plate,
which vibrates and displaces the sprinkles forming distinct patterns (mode-shapes) along vibration
nodal lines at resonant frequencies of the plate. A receiver, such as a sound level meter, measures
acoustic sound intensity while sine wave frequencies are swept. A natural frequency is reached when
the receiver displays a local maximum value and when the sprinkles assume a Chladni pattern.
Practically, this method has been found to be limited to about 1200 Hz for such a 50 W nominal
speaker. The frame shown in Fig. 6 is also limited to using a 50 W speaker, as this is the smallest
speaker diameter that fits below this frame. In theory, higher frequency measurements could be
achieved on a larger plate with a more powerful speaker. However, proper sound insulation would be
Table 1
Items used in the experimental setup for the speaker/Chladni pattern testing method.

Item Specifications

(1) Signal Amplifier BOGEN Classic C60 Amplifier - 60 W RMS.
(2) Acoustic Earmuffs Protects the subject from the loud generated sounds.
(3) Cake Sprinkles Moves along with the mode-shapes being light and non-adhesive.
(4) Plate and Frame Joined using a removable sealant and fastened with a wrench.
(5) Sound Receiver EXTECH HD600 Datalogging Sound Level Meter.
(6) Sound Emitter Diameter 5:5}, nominal 50 W, maximum 120 W, impedance 8 V.



Fig. 13. Experimental setup for the impulse hammer/accelerometer testing method.
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required as frequencies above 1200 Hz are uncomfortable for the operator, even while wearing ear
protection. The speaker and Chladni pattern method setup is described in Fig. 12 and Table 1.

Testing method 2: Impulse Hammer and Accelerometer Method
Accelerometers are glued to the surface of the plate using hot glue and the plate surface is impacted

using an impulse hammer. Appropriate locations for placing accelerometers and impacting the plate
when measuring the six lowest modes of vibration are shown in Fig. 16. These locations should be
chosen to be simultaneously as close to as many antinodes under consideration as possible, while
avoiding nodes completely. Both the impact force using a load cell and the response using
accelerometers are measured. The signals are then processed by a signal conditioner and captured by a
data acquisition (DAQ) device connected to a computer for further processing and modal extraction.
When impacting the plate, ensure the hammer remains orthogonal to the plate and restrict the force
to a range 25 to 65 N for plates that fit within the frame shown in Fig. 6. This range has been found to
provide optimal signal to noise ratios for extracting modal information. However, an appropriate
impact force range will need to be determined for plates of other dimensions. Care must be taken not
to impact the plate with such a large force that its resulting deformation would cause the plate to
separate from the removable sealant. Signal processing should be considered carefully to ensure
accurate results. Accelerometer and impulse hammer signals should be isolated. Logarithmic
decrements for modal analysis can be used to convert impulses and accelerations into natural
frequencies. The Least-Squares Complex Exponential (LSCE) algorithm was found to be best suited for
this experiment. Finally, the window size (range of data points recorded on impact) must be optimized
to obtain the cleanest results. The setup is described in Fig. 13 and Table 2.

Method validation

6061-T6 aluminum plates were used to validate the method. Seven plates were tested and two
configurations were used: simple flat rectangular plates and a ribbed plate where the rectangular
cross-section rib is centered along the plate’s length, as shown in Fig. 14. The ribbed plate was
manufactured as one piece.
Table 2
Items used in the experimental setup for the impulse hammer/accelerometer testing method.

Item Specifications

(1) Sealant Gun and Sealant Reduces plate-frame contact and minimizes clamping effects.
(2) Glue Gun Fixes the accelerometers on the plate surface.
(3) Accelerometers PCB PIEZOTRONICS INC. Model 352C22.
(4) Plate and Frame Simply-supports the plate and fastened with a wrench.
(5) Impact Hammer KISTLER Model 9928 – Provides impacts and measures the force.
(6) Signal Conditioner PCB PIEZOTRONICS INC. Model 482C Series.
(7) Power Supply/Coupler KISTLER Type 5114 – Powers hammer and outputs signal.
(8) Multifunction I/O Device NI USB-6212 – DAQ outputs to computer for processing.



Fig. 14. Ribbed plate.

Table 3
Material properties of 6061-T6 aluminum [1].

Parameter Values

E Young’s modulus (Pa) 6:89 � 1010

r Volumetric mass density (kg m�3) 2:70 � 10�3

n Poisson’s ratio 3:30 � 10�1

Table 4
Plate configurations and dimensions.

Parameter Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 Ribbed plate

a Plate length a (mm) 246:7 246:6 246:6 246:5 245:5 246:5 206
b Plate width b (mm) 186:1 186:1 186:3 186:2 186:2 186:2 186
h Plate thickness h (mm) 0:81 0:81 0:81 1:23 1:23 1:23 2:15
br Rib width br (mm) � � � � � � 4:36
hr Rib thickness hr (mm) � � � � � � 7:40
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Material properties of these aluminum plates are given in Table 3.
Plate configurations and their dimensions used to validate the method are provided in Table 4.
Tested plates range in mass between 0.10-0.24 kg. The supporting frame, as shown in Fig. 6, has a

mass of approximately 3.2 kg. This provides a plate to frame mass ratio range of 0.03-0.08, helping to
minimize effects of the frame on the plate’s natural frequencies and well below the value determined
to be adequate by Robin et al. [2].

To validate the method, the measured natural frequencies of the simply supported flat rectangular
aluminum plates were compared to theoretical values provided by the Kirchhoff-Love plate theory
[3]:
vmx ;my ¼  p2
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where m is the mode number in each direction, r is the density of the plate, L is the length of the plate
along each axis and D is:
D ¼ E � h3

12 1 � n2ð Þ ð2Þ
In this case, E is the modulus of elasticity, h is the thickness of the plate and n is Poisson’s ratio.
Kirchhoff-Love plate theory is considered to be valid because h=b � 0:1 in all cases [4]. Mindlin plate
theory was also considered [5], but provided insignificant improvements on the results for the
dimensions listed in Table 4. Results of Eq. (1), along with both experimental methods described above



Table 5
Theoretical and experimental natural frequencies of simply supported flat rectangular plates.

Vibration mode Plate 1
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

Plate 2
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

mx ¼ 1;  my ¼ 1 89:0 92:4 3:8 90:4 1:5 89:0 93:1 4:6 95:1 6:8
mx ¼ 2;  my ¼ 1 186:0 195:4 5:1 174:9 5:9 186:0 195:2 4:9 189:4 1:8
mx ¼ 1;  my ¼ 2 259:2 263:4 1:6 254:6 1:8 259:2 266:8 2:9 266:5 2:8
mx ¼ 2;  my ¼ 2 356:2 359:4 0:9 342 4:0 356:2 364:5 2:3 361:5 1:5
mx ¼ 3;  my ¼ 1 347:5 350:6 0:9 333:6 4:0 347:6 355:4 2:3 350:5 0:8
mx ¼ 1;  my ¼ 3 542:9 542:7 0:0 540:8 0:4 542:9 552:1 1:7 521:5 3:9

Vibration mode Plate 3
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

Plate 4
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

mx ¼ 1;  my ¼ 1 89:0 95 6:8 92 3:4 135:2 141:4 4:6 139:8 3:4
mx ¼ 2;  my ¼ 1 186:0 197 5:9 186:7 0:4 282:6 287:5 1:7 284:4 0:6
mx ¼ 1;  my ¼ 2 259:0 271 4:6 263:8 1:9 393:5 396:4 0:7 392:6 0:2
mx ¼ 2;  my ¼ 2 356:0 367:1 3:1 356:4 0:1 540:9 548:5 1:4 541 0:0
mx ¼ 3;  my ¼ 1 347:6 357:7 2:9 343 1:3 528:1 532:8 0:9 522:5 1:1
mx ¼ 1;  my ¼ 3 542:3 556:3 2:6 516:4 4:8 824:0 823:5 0:1 812:3 1:4

Vibration mode Plate 5
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

Plate 6
(Hz)

Sp/Ch
(Hz)

Error
|%|

Im/Ac
(Hz)

Error
|%|

mx ¼ 1;  my ¼ 1 135:6 139:2 2:6 138:6 2:2 135:2 139:1 2:9 138:1 2:1
mx ¼ 2;  my ¼ 1 284:2 287:2 1:1 284:2 0:0 282:5 286:5 1:4 283 0:2
mx ¼ 1;  my ¼ 2 393:9 399:3 1:4 396:4 0:4 393:4 397:7 1:1 389:3 1:0
mx ¼ 2;  my ¼ 2 542:5 549:4 1:3 551:8 1:7 540:8 546 1:0 526:1 2:7
mx ¼ 3;  my ¼ 1 531:8 533:2 0:3 530:3 0:3 528:1 534 1:1 520:8 1:4
mx ¼ 1;  my ¼ 3 824:3 831:3 0:8 838:8 1:8 823:8 820:2 0:4 739 10:3
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for each simple flat plate using material properties of Table 3 and dimensions of Table 4 are tabulated
in Table 5. In this case, Plate 1,2 . . . 6 = theoretical frequencies for each mode calculated using Eq. (1),
Sp/Ch = Speaker/Chladni pattern testing method and Im/Ac = Impulse hammer/Accelerometer testing
method (using the average of two accelerometers placed on the plate, as in Fig. 16).

To capture the theoretical natural frequencies of the simply supported ribbed plate, a finite element
analysis (FEA) model was created and simulated in COMSOL 5.1 using higher-order shear deformation
theories. Results of the FEA model are given in Fig. 15. However, this model does not include the
additional mass of the two accelerometers which would effectively lower the natural frequencies.
Therefore, this model is referred to as the base model. A second augmented model was also created
and simulated with accelerometer masses at their experimental location shown in Fig. 16.

A comparison of the results for both the base and augmented FEA models to their experimental
counterparts is provided in Table 6. In this case, Base = theoretical frequencies for each mode
calculated using the FEA model and Augmented = theoretical frequencies for each mode calculated
using the FEA model with two additional accelerometer masses located as in Fig. 16. Sp/Ch and Im/Ac
are the same as in Table 5.

For the ribbed plate, the average error when comparing experimental results to theoretical natural
frequencies was 0.31% with a standard deviation of 0.39. In the case of the simple flat plates, the
average error was 2.3% with a standard deviation of 1.72. In all cases, thicker plates provided better and
more consistent results. This is likely due to the reduced impact that compressive stresses from
mounting the plates in the supporting frame had on their material properties. Moreover, the largest
errors occurred for the lowest frequency, likely due to the significant increase in resonance energy for
this mode of vibration. Only a few outliers can be identified in the data and can likely be attributed to
normal experimental and material variability. Overall, results confirm that the proposed setup
provides reliable experimental measurements when compared to theory and should be used when
multiple measurements must be taken relatively quickly or plates must be reused for other
experiments or purposes.



Fig. 15. Results of the base ribbed plate FEA model for the lowest six modes of vibration.
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Additional information

The use of simply supported boundary conditions is generally favored in the theoretical modeling
of vibrating plates due to their mathematical simplicity, as well as the availability of exact analytical
solutions. Conversely, free and clamped boundary conditions are favored during experimental studies
due to the ease in which they can be accurately represented experimentally. Unfortunately, the
literature available for the experimental measurement of simply supported rectangular plates is
sparse, as these are rather more difficult to model under real experimental constraints. One of the
earliest attempts at experimentally modeling simply supported boundary conditions was performed
by Hearmon on wooden plates [6]. In this study, a wooden frame was constructed using large
v-grooves and long bolts which spanned the width of the plate in each direction. A similar method was



Table 6
Theoretical and experimental natural frequencies of a simply supported ribbed rectangular plate.

Vibration modes
of ribbed plate

Base
(Hz)

Sp/Ch
(Hz)

Error
|%|

Augmented
(Hz)

Im/Ac
(Hz)

Error
|%|

mx ¼ 1;  my ¼ 1 357:7 355 0:8 356:9 356:6 0:1
mx ¼ 2;  my ¼ 1 684:3 680 0:6 681:1 680:9 0:0
mx ¼ 1;  my ¼ 2 1; 064 1062 0:2 1; 056 1; 056 0:0
mx ¼ 2;  my ¼ 2 1; 169 1; 156 1:1 1; 158 1; 158 0:0
mx ¼ 3;  my ¼ 1 1; 229 � � 1; 226 1; 226 0:0
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developed by Amabili using sliding slots to accommodate various plate sizes and silicon to account for
span shortening [7,8]. A similar experimental setup is discussed by Guo et al. [9,10] and used by
Dumond and Baddour [11], the latter suggesting the use of removable sealant instead of silicon so that
time between experimental trials is reduced and plate samples can easily be reused. Unfortunately,
the edges of their plates had to be tapered to a point to properly sit in the v-grooves. The proposed
method is based on the early work of Dumond and Baddour, providing the exact protocol for
reproducing such experiments, but allowing plates to keep their original square edges and suggesting
improvements, such as slots for surface mounting additional elements onto the plate. Alternatively,
Barnard and Hambric propose that the supporting frame and the plate be made from one thick block of
aluminum, where the plate is machined down in thickness and a groove is provided at its perimeter by
only leaving a very thin webbing to support the plate [12]. While this approach is interesting, it does
require that the plate and support be made of the same material and does not allow for span
shortening. Alternatively, Hoppmann and Greenspon suggest clamping the edges of a larger plate and
cutting grooves in the plate itself by notching to a depth of 80% of the total plate thickness at a
perimeter line within the supported region which defines the actual plate dimensions of interest [13].
Obvious difficulties arise in using these plates for other purposes. Using a completely different
approach, Ochs and Snowdon developed an experimental setup using a spring-steel skirt and support
strip fixed to the plate using jewelers screws [14]. The spring-steel skirt is slotted to allow air to move
freely around the vibrating plate and to allow for height adjustments of the setup. Pan et al. [15] and
Yoon and Nelson [16] discuss similar setups. Champoux et al. provide guidelines and calculations for
selecting the stiffness of the skirting material [17] which are based on the properties of the plate.
Because of the difficulty inherent in using screws to fasten the edge of thin plates and the potential
effects screw holes have on the results, Robin et al. suggest the use of a permanent adhesive instead
Fig. 16. Location of accelerometers (+) and hammer impacts (x).
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[2]. However, the use of permanent adhesive limits the ability to use the plate following the vibration
experiment. Moreover, a new spring-steel skirt must be defined and created for every plate used. In all
cases, experimental results compare well to theoretical values and have been shown to be satisfactory.
Although, the ease of experimental implementation varies greatly between methods. The method
described herein provides a low-cost, simple, accurate and non-destructive way of experimentally
measuring the modal properties of thin, simply supported plates and can be used for quick validations
of models and designs without modification for multiple trials and varying plate properties.
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