
� James Akl May 2020

Noise Extraction in Disturbance Observer-Based Control

A Computational Inverse Problems Approach

Introduction

In certain applications, there is great interest in estimating noise as it manifests itself in the

output. One such application is 'Disturbance Observer-Based Control' (DOBC). In DOBC,

the eventual goal is disturbance rejection (i.e., removing noise or perturbation called

disturbance from the control loop). This is especially useful when higher-order dynamics are

intractable or too expensive to compute [1]. The unmodeled dynamics and modeling errors

are lumped as a second, unknown input (the disturbance), and a device called ‘disturbance

observer’ estimates the disturbance. When the estimate is good enough, it can be subtracted

from the input to reduce the effect of the true disturbance. There is great interest in applying

DOBC as a cheap and reliable alternative to expensive higher-order formulations, especially

in manufacturing, robotics, and aerospace [2].

Inverse Problem Structure

The system G needs to be controlled, meaning its actual output � should match some

arbitrary reference target (the desired output) �
���

. G can be represented in different ways

e.g., state-space, transfer function, integral equation, matrix, or a general mapping. The

controller generates an adequate control input � which maps to � via G i.e., G� = ��. In

other words, the controller executes �ref ↦ � and provides G with an input �. The

controller is assumed ideal and is abstracted away in this problem i.e., � is given directly

without needing �ref . Unknown inputs
 (noise, perturbation, disturbance) get added to

the input � and the sum is mapped by G as in (f1):

�(�) +
(�) ↦� ��+�(�) (f1)
A disturbance estimate
(̂�) is pre-subtracted from the control input �(�) giving (f2):

�(�) +
(�) −
(̂�) ↦� �̂(�) (f2)
�̂(�) is the estimated output. Clearly, as
̂ →
 then �̂ → ��. An important distinction is

that both the control inputs and noisy outputs �(�) and ��+�(�) are known. The goal is to

estimate the unknown input i.e.,
(�), using
(̂�), given �(�) and ��+�(�). Disturbance is

not necessarily random noise and can be unmodeled dynamics with a sinusoidal profile, or

in the simplest case, a constant offset. The continuous signals can be discretized i.e., �(�) ∈
� is replaced with � ∈ ℝ� by sampling � points.

https://jamesakl.com/

James Akl May 2020

[2 / 17]

Additional rewriting is performed to restructure into a common Inverse Problems

formulation. The problem essentially is (f3).

̂ = argmin

�
‖��+� − G(� +
)‖ (f3)

For clarification, the notation is equivalent to:

%true ≡ � +
 % ≡ � +
 ̂ G ≡ G �true ≡ G(� +
) � ≡ G(� +
)̂ = ��+�

Stating and solving � = G(%) yields (f5) where , is the “output noise”, i.e., the deviation

from the true output. In this case it refers to the deviation produced by an imperfect

estimate
.̂

��+� = G(� +
)̂ = �true + , = G(� +
) + , (f5)
From this, obtain the residual,

- = � − G(%) ≡ ��+� − G(� +
)̂ (f6)
Thus, obtain the naive solution using the least-squares formulation,

L̂S = argmin
�̂

∥��+� − G(� +
)̂∥22 (f7)
The LS formulation in (f6) is equivalent, in form, to,

%LS = argmin
3

‖� − G(%)‖22 (f8)
Usually, % can be directly obtained, whereas here
 ̂is obtained via the expression � +
.̂

Literature Review

All the literature used was devoted to better understanding the problem and setup of

Disturbance Observer–Based Control. In effect, this problem has never been formulated in

the structure treated in this report. More so, DOBC is usually studied in a purely

continuous-signal approach and is only converted to discrete control in industrial

applications. From [1], the contextual information and utility of DOBC can be found, and

in [2] detailed formulations and examples illustrate the effectiveness of DOBC to compensate

unknown inputs, whether deterministic, stochastic, linear, or nonlinear. A very brief and

simple formulation of DOB controllers, as well as a broad exposition of major state and

disturbance estimators and observers as used in control can be found in [3]. Inverse problem

solution techniques are becoming more popular in control, although it is entirely absent

from the realm of disturbance observers; a gap explored in this project.

James Akl May 2020

[3 / 17]

Materials & Methods

Forward Operator

In most practical control applications, G is either linear or linearized to exploit the wealth

of simple yet powerful tools within Linear Control Theory. G will be modeled as a Fredholm

equation of the first kind (f9), to be discretized. The inverse problem thus starts as

continuous linear but ends up as discrete linear.

6(7) = ∫ 9(7, �);<

;1
>(�) ?� (f9)

Discretize in 7 and � with @ and � steps respectively to obtain G ∈ ℝA×�, in which case,

{�,
,
}̂ ⊂ ℝ� and {��+�, -, �̂} ⊂ ℝA. Finally, the discrete linear inverse problem is

��+� = G(� +
), where the eventual goal is to estimate
 with
 ̂given �, ��+�, and G.

The discretization and system generation are explained in the comments of generate.m .

Data

The problem will have the following components: >(�) = sin2(I�) and 9(7, �) = J(7 − �)
where J is the Heaviside step function. Various disturbance types can be tested, most

notably K(�) ∈ {sin � , 1, � ∼ N(O, P)}.

This setup simulates oscillations that accumulate to a threshold maximum after which the

signal is clipped to a constant, similarly to what happens with a speaker and its membrane

that cap at a maximum amplitude.

With ��+� and G given to us, estimate � +
 ̂using a subset of the methods listed below;

and given � obtain
 ̂and thus the estimated output �̂. Compare these to
 and �true and

discriminate between the method outcomes.

In the plots below, the (orange) input, as noted is >(�) = sin2(I�) and 9(7, �) = J(7 − �).
The (green) disturbance K(�) is added and the (blue) output response 6(7) is obtained.

The disturbance type is laid out below in the same order as in the plot array (next page).

K(�) = 0 K(�) = 1
K(�) = sin � K(�) ∼ N(O = 0, P = 0.2)

James Akl May 2020

[4 / 17]

The m-function generate has the header function [G,y,u,d] = generate(N,q)

and generates all required quantities. Here, N is the size of the problem (note: must be

even), specifically the size of the output-space. The output space is smaller (adding certain

inconveniences to the problem). Also, q is the disturbance type selector, which chooses one

of the four disturbance types above.

Since there are four disturbance types, and three solution methods, then there are 12 unique

simulation cases. There are around four plots per case, which leaves us with an approximate

total of 48 plots. Instead of displaying them in all, an illustrative subset is included.

If the remaining cases are of interest, it is trivial to change the simulation configuration. In

the MATLAB main m-scripts (three total, one for each method), modify the disturbance

type selector q as detailed in the m-script comments. For example. setting q = 3 runs the

simulation for Gaussian disturbance.

Methods

The inverse problems will be solved using three distinct methods.

• Tikhonov regularization via SVD, with the parameter T ∈ [0.001, 10].
• Conjugate gradient least-squares, with the parameter W ∈ [1, �].
• Stochastic gradient descent, with the parameter W, in our problem W ≤ 20,000.

James Akl May 2020

[5 / 17]

Results

In the provided simulations, the problem dimensions are as follows:

G ∈ ℝ1000×500, {�,
} ⊂ ℝ1000, {�, �̂} ⊂ ℝ500

Note that for the sake of plotting, the outputs � are extended to ℝ1000 for plotting purposes

(to show the effect of the convolution, see derivation above).

Note that, not all results for every single case are displayed, since it would make the report

excessively long, and would not add additional insight. However, any desired case can be

obtained by running the main m-scripts with the adequate disturbance type selector q .

Tikhonov Regularization

The following results are displayed for the ‘best’ Tikhonov solutions.

`

Sinusoidal Disturbance (q = 1)

James Akl May 2020

[6 / 17]

L–Curve (q = 1)

L–Curve (q = 1)

James Akl May 2020

[7 / 17]

Sinusoidal Disturbance (q = 2)

Sinusoidal Disturbance (q = 2)

James Akl May 2020

[8 / 17]

Constant Disturbance (q = 1)

Constant Disturbance (q = 1)

James Akl May 2020

[9 / 17]

Conjugate Gradient Least–Squares

The following results are displayed for the ‘best’ CGLS solutions.

Constant Disturbance (q = 1)

James Akl May 2020

[10 / 17]

L–Curve (q = 1)

L–Curve (q = 1)

James Akl May 2020

[11 / 17]

Constant Disturbance (q = 1)

Constant Disturbance (q = 1)

James Akl May 2020

[12 / 17]

Sinusoidal Disturbance (q = 2)

Sinusoidal Disturbance (q = 2)

James Akl May 2020

[13 / 17]

Gaussian Disturbance (q = 3)

Gaussian Disturbance (q = 3)

James Akl May 2020

[14 / 17]

Stochastic Gradient Descent

The following results are displayed for the ‘best’ SGD solutions.

L–Curve (q = 1)

James Akl May 2020

[15 / 17]

Constant Disturbance (q = 1)

Constant Disturbance (q = 1)

James Akl May 2020

[16 / 17]

Discussion

All methods were able to achieve some sense of success. However, they can be clearly ranked.

For this problem, overall, CGLS performed best, and SGD performed worst. The nuances

and details of the comparison are discussed further below.

Performance

CGLS reached its best solution is at most 8 iterations. This is in addition to its advantage

of being an iterative scheme. It is, by far, the fastest solution among the three.

The Tikhonov SVD implementation, due to the nature of the factorization, scales badly

with input size. Although the performance was acceptable, it was clearly inferior to CGLS.

SGD took between 10,000 and 20,000 iterations for acceptable results. It is much slower

and is ranked last in terms of performance.

Accuracy

The CGLS and Tikhonov ‘best’ solutions were comparable in accuracy. The Tikhonov

solution did result in slightly better estimated outputs �̂, but the difference is not too

important. SGD yielded a much inferior input recovery, and due to its random nature, its

solution contained some unwanted oscillatory behavior.

Conclusion

Overall, considering the simplicity, speed, and quality of CGLS, it is deemed the best

method for this problem. The second-best is Tikhonov regularization. Last and least, SGD,

while it worked, did not compare well, particularly for this problem.

Remarks

It was a bit surprising to see the formulation perform so well for a Gaussian disturbance. It

is highly unintuitive to see a Gaussian signal estimated by another Gaussian signal

successfully, yet the estimated output was good enough.

Working around the dimensional difference in the input and output spaces was not as

straightforward as one would expect. While this did not necessarily worsen the ill-posedness,

it did make it harder to recover the larger input from a smaller output.

For future work, it would be interesting to employ an inverse solver in a full control system.

James Akl May 2020

[17 / 17]

References

[1] Chen, W. H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based

Control and Related Methods - An Overview. IEEE Transactions on Industrial

Electronics. https://doi.org/10.1109/TIE.2015.2478397

[2] Disturbance Observer-Based Control: Methods and Applications. (2015). IEEE

Control Systems. https://doi.org/10.1109/mcs.2015.2408011

[3] A. Radke and Zhiqiang Gao. (2006). A Survey of State and Disturbance Observers

for Practitioners. American Control Conference, Minneapolis, MN, 2006.

https://doi.org/10.1109/ACC.2006.1657545

