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Finite Element Analysis of a 1D Convection–Diffusion Problem 

Formulation, Implementation, and Optimization 

Problem Statement 

The governing PDE for the 1D Convection–Diffusion problem is given as: 

− ���(� ����) + 	 ���� = 0      for � ∈ (0, �) (0) 
With the following boundary conditions. 

{� = 0 mol m3⁄    at � = 0� = 1 mol m3⁄    at � = � (1) 
The parameter values are given as � = 1 m, � = 2 m2 s⁄ , and 	 = 10 m s⁄ . 

 

Galerkin Formulation 

State the Weighed-Residual Form and then obtain the Weak Form via Integration by Parts. 
∫ ! [− ��� (�����) + 	����]d�%&

%'
= 0 ⟹ ∫ [��!�� ���� + 	 !����]d�%&

%'
− [! �����]%'

%& = 0 (2) 
The operation is carried out as follows (∫ !*′,� = −∫ *!′,� + [!*]) with (* = −� �� ��⁄ ). 
In local coordinates, take (� ⟼ �̅ + �1), (�1 ⟼ 0), and (�2 ⟼ ℎ4). Here, � and 	 are 

constants and thus remain unchanged. Note that �� = ��.̅ Therefore, (2) becomes: 

∫ [��!��̅ ����̅ + 	 !����̅] d�̅ℎ6

0
− ∑!(�:̅)<:

=
:=1

= 0 (3) 
With <1 = (−� �� ��̅⁄ )%16 , <A = (� �� ��̅⁄ )%B6− − (−� �� ��̅⁄ )%B6+, and <= = (� �� ��̅⁄ )%C6 . 

Using Galerkin, apply ! = DA4, and � = ∑ �:D:4=:=1  to obtain ∑ FA:4=:=1 �: − <A = 0, with 

FA:4 = ∫ [��DA4��̅ �D:4��̅ + 	 DA4
�D:4��̅ ] d�̅ℎ6

0
(4) 

The mesh is composed of H  equally-sized centered quadratic elements. Thus ℎ4 = ℎ = � H⁄  

and the shape functions are: 

D14 = D1 = 2ℎ2 �2̅ − 3ℎ�̅ + 1          D24 = D2 = − 4ℎ2 �2̅ + 4ℎ� ̅         D34 = D3 = 2ℎ2 �2̅ − 1ℎ� ̅

Note that equation (4) is now independent of element number. In other words, FA:4 = FA:, for 

all I ∈ {1,… , H}.  
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Gauss-Legendre Quadrature 

An M-point Gauss-Legendre quadrature is exact for polynomials of degree (2M − 1).[1] 

Notice that the integrand N(�)̅ = �(�DA ��̅⁄ )(�D: ��̅⁄ ) + 	 DA(�D: ��̅⁄ ) in (4) is cubic for all 

elements. Thus, the degree of exactness (2M − 1 = 3) requires only (M = 2) Gauss points. 

The Gauss point abscissa and weights are �A̅ = {1 √3⁄ , − 1 √3⁄ } and !A = {1,1}.  

The exact result is obtained: 

∫ N(�)̅2
1

d�̅ = R − S2 ∑!A N (R − S2 �A̅ + S + R2 )==2
T=1

(5)  
With S = 0 and R = ℎ, this simplifies to: 

∫ N(�)̅ℎ
0

d�̅ = ℎ2 [N (ℎ2 (1 + 1√3)) + N (ℎ2 (1 − 1√3))] (6) 
 

Mesh and Node Numbering 

The node numbering of the H  quadratic elements is carried out as follows: 
 

The connectivity matrix for this mesh is thus obtained. 

[ =
⎣⎢
⎢⎢
⎡ 1 H + 2 2⋮ ⋮ ⋮` H + ` + 1 ` + 1⋮ ⋮ ⋮H 2H + 1 H + 1⎦⎥

⎥⎥
⎤ (7) 

From this particular connectivity matrix emerges a noticeable pattern in the global 

coefficient matrix. For example, with H = 2 elements, the coefficient matrix is: 

e =
⎣⎢
⎢⎢
⎢⎡

F111 F131  F121  F311 F331 + F112 F132 F321 F122
 F312 F332  F322

F211 F231  F221   F212 F232  F222 ⎦⎥
⎥⎥
⎥⎤

 

Note that F4 = F for all I and thus the superscripts can be omitted. 

There is an assembly pattern that can be extracted from the connectivity matrix. 

 

[1] Yew, A. Numerical integration: Gaussian quadrature rules. APMA 0160. Spring 2011. 

www.dam.brown.edu/people/alcyew/handouts/GLquad.pdf  
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Assembly Procedure 

More generally, for any H  elements, the (2H + 1) × (2H + 1) global coefficient matrix can be 

proven inductively to be of the form: 

e =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

F11 F13    F12    F31 F11 + F33 ⋱   F32 ⋱    ⋱ ⋱ ⋱   ⋱ ⋱    ⋱ F11 + F33 F13   ⋱ F12   F31 F33    F32F21 F23    F22     ⋱ ⋱    ⋱     ⋱ ⋱    ⋱     F21 F23    F22⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

(8) 

The following assembly rules hold: 

eA,A =
⎩{{
⎨{
{⎧ F11 for ` = 1F11 + F33 for ` ∈ {2,… , H}F33 for ` = H + 1F22 for ` ∈ {H + 2,… ,2H + 1}

 

eA,A+1 = {F13 for ` ∈ {1,… , H}0 for ` ∈ {H + 1,… ,2H + 1}   eA+1,A = {F31 for ` ∈ {1,… , H}0 for ` ∈ {H + 1, … ,2H + 1} 

 eA,n+A+1 = {F12 for ` ∈ {1,… , H}0 for ` ∈ {H + 1,… ,2H + 1}   en+A+1,A = {F21 for ` ∈ {1, … ,H}0 for ` ∈ {H + 1, … ,2H + 1}  

eA+1,n+A+1 = {F32 for ` ∈ {1,… , H}0 for ` ∈ {H + 1,… ,2H + 1}  en+A+1,A+1 = {F23 for ` ∈ {1,… , H}0 for ` ∈ {H + 1, … ,2H + 1}  

Thus, in the MATLAB implementation, rather than using the connectivity matrix directly: 

 >> for k = 1:N for I = 1:3 for J = 1:3 
        K(B(k,I),B(k,J)) = K(B(k,I),B(k,J)) + ke(I,J); 
    end end end; 
 

It is possible to exploit the derived sparsity pattern of e for several advantages. First, triplet 

storage format can be easily implemented using the built-in MATLAB sparse(i,j,v,m,n) 

function which greatly enhances performance scaling by eliminating dynamic allocation. 

Second, avoiding the nested for-loops reduces computational time complexity. Note that, the 

connectivity matrix is still used during assembly, just indirectly. 
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Convergence Analysis 

Using Main.m obtain the FEM solution for increasing element numbers H . Overlay the 

result plots in a single graphic to clearly verify the convergence of the FEM model. The 

model converges at around H = 10, which will be adopted for further analysis. 

 

 

Solution Validation 

Three solutions will be obtained and compared: (1) MATLAB finite element solution,  

(2) COMSOL finite element solution, and (3) the exact solution �ex(�) = 45r−145−1 . 

Obtain the exact solution of the problem using the following query in Mathematica 11.0. 

DSo�v�[{-2 D[�[x],{x,2}] + 10 D[�[x],{x,1}] == 0, �[0] == 0, �[1] == 1},�[x],x] 

 

COMSOL 5.1 is used to generate the solution in FEM_Project.mph to be compared with the 

MATLAB solution given by the Main.m script. For comparative purposes, use H = 10 

quadratic elements (equivalent to Main(10) in MATLAB and to he = 0.05 in COMSOL). 

All numerical results are listed in the following table. 
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s tuvwxy txz{|z} t{wy}w~ s tuvwxy txz{|z} t{wy}w~ 

0.00 0.0000000 0.0000000 0.0000000 0.55 0.0993306 0.0993317 0.0993313 
0.05 0.0019267 0.0019268 0.0019259 0.60 0.1294700 0.1294710 0.1294911 
0.10 0.0044007 0.0044008 0.0044022 0.65 0.1681691 0.1681706 0.1681645 
0.15 0.0075773 0.0075775 0.0075774 0.70 0.2178601 0.2178618 0.2178875 
0.20 0.0116562 0.0116565 0.0116598 0.75 0.2816647 0.2816665 0.2816464 
0.25 0.0168936 0.0168939 0.0168946 0.80 0.3635914 0.3635933 0.3636221 
0.30 0.0236186 0.0236190 0.0236250 0.85 0.4687873 0.4687891 0.4687381 
0.35 0.0322536 0.0322541 0.0322554 0.90 0.6038615 0.6038631 0.6038872 
0.40 0.0433412 0.0433418 0.0433515 0.95 0.7773002 0.7773013 0.7771866 
0.45 0.0575779 0.0575787 0.0575800 1.00 1.0000000 1.0000000 1.0000000 
0.50 0.0758582 0.0758591 0.0758736 ! ! ! ! 

 

Define a function to quantify the error between solution vectors using the 2-norm: 

RelErr(���� , �) = ‖���� − �‖2 ‖���� ‖2⁄  and obtain the following relative errors: 

RelErr{(tuv., txz{.) (tuv.,t{wy.) (txz{.,t{wy.)} = 10−5 ⋅ {0.3067 8.666 8.698} 

Using quadratic interpolation order between the nodal values, it is possible to overlay the 

three solutions and notice that they satisfyingly overlap in the plot below. The COMSOL and 

MATLAB solutions are deemed valid when compared to the exact solution. More so, they are 

consistent amongst each other having a miniscule relative error.  

 


