Solution to "Normal and Tangent Cones"

In \mathbb{R}^{n}, we consider the set:

$$
\Lambda_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i} \geq 0 \forall i \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

Part (a): Verify that Λ_{n} is closed and convex.

Convexity

Let $x \in \Lambda_{n}$ be an arbitrary vector.

It can be decomposed using the canonical basis into $x=\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \hat{\mathbf{e}}_{i}$.
Since $x_{i} \geq 0$ for all i and $\sum_{i=1}^{n} x_{i}=1$ then x is a convex combination of unit vectors $\hat{\mathbf{e}}_{i}$.
The convex hull of $\left\{\hat{\mathbf{e}}_{1}, \ldots, \hat{\mathbf{e}}_{n}\right\}$ is the set of all convex combinations of its elements $\hat{\mathbf{e}}_{i}$, that is, the set of all x.

Thus, $\Lambda_{n}=\operatorname{conv}\left(\left\{\hat{\mathbf{e}}_{1}, \ldots, \hat{\mathbf{e}}_{n}\right\}\right)$ is convex.

Closedness

Let $x_{k}=\left(x_{1, k}, \ldots, x_{n, k}\right) \in \Lambda_{n}$ be an arbitrary vector sequence with $\left(x_{1, k}\right)_{k \in \mathbb{N}}, \ldots,\left(x_{n, k}\right)_{k \in \mathbb{N}}$ being n arbitrary sequences in \mathbb{R} such that: $\lim _{k \rightarrow \infty} x_{i, k}=x_{i}$ for all $i \in\{1, \ldots, n\}$.

Since $x_{k} \in \Lambda_{n}$ then obtain:

$$
x_{i, k} \geq 0 \forall i \in\{1, \ldots, n\} \text { and } \sum_{i=1}^{n} x_{i, k}=1
$$

By the properties of real-valued limits obtain that: $\lim _{k \rightarrow \infty} x_{i, k} \geq \lim _{k \rightarrow \infty} 0 \Longrightarrow x_{i} \geq 0$ for all i. Moreover, apply the limit to the sum:

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{n} x_{i, k}=\sum_{i=1}^{n} \lim _{k \rightarrow \infty} x_{i, k}=\sum_{i=1}^{n} x_{i}=\lim _{k \rightarrow \infty} 1=1
$$

Realize that the vector $x=\lim _{k \rightarrow \infty} x_{k}=\left(x_{1}, \ldots, x_{n}\right) \in \Lambda_{n}$ since:

$$
x_{i} \geq 0 \forall i \in\{1, \ldots, n\} \text { and } \sum_{i=1}^{n} x_{i}=1
$$

Therefore Λ_{n} is closed.

Part (b): Sketch Λ_{3} and find geometrically (without an analytic proof) $N_{\Lambda_{3}}(x)$ and $T_{\Lambda_{3}}(x)$ at the points $x=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)$ and $(0,0,1)$.

For $n=3$, label $\left(x_{1}, x_{2}, x_{3}\right)=(x, y, z) \in \mathbb{R}^{3}$.
Here $\Lambda_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right.$ and $\left.x, y, z \geq 0\right\}=\operatorname{conv}\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3}\right)$.

Geometrically Λ_{3} is the surface bounded equilateral triangle formed by $(1,0,0),(0,1,0)$, and $(0,0,1)$.

For the interior point $A=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, the normal cone is the orthogonal straight line passing through A.

$$
N_{\Lambda_{3}}(A)=\{(t, t, t): \forall t \in \mathbb{R}\}
$$

Consequently, the tangent cone at A is the plane containing Λ_{3} :

$$
T_{\Lambda_{3}}(A)=\{(x, y, z): x+y+z=1 \text { and } x, y, z \in \mathbb{R}\}=\operatorname{aff}\left(\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3}\right)\right)
$$

For the edge point $A=\left(0, \frac{1}{2}, \frac{1}{2}\right)$, the normal cone is the plane line passing through A and orthogonal to the edge containing A. This is the plane $y-z=0$.

$$
N_{\Lambda_{3}}(A)=\{(x, y, z): y-z=0 \text { and } x, y, z \in \mathbb{R}\}
$$

Consequently, the tangent cone at A is also the plane containing Λ_{3} :

For the vertex $A=(0,0,1)$, the normal cone is the intersection of the epigraphs of the two planes orthogonal at A to the edges containing A.

This is the space above both planes $x-z+1=0$ and $y-z+1=0$.

$$
N_{\Lambda_{3}}(A)=\{(x, y, z): x-z+1 \geq 0 \text { and } y-z+1 \geq 0 \text { and } x, y, z \in \mathbb{R}\}
$$

Consequently, the tangent cone is the polar cone, that is, the intersection of the hypographs of the two planes passing through A and orthogonal to the edges containing A.

This is the space below both planes $x-2 y+z-1=0$ and $-2 x+y+z-1=0$.

$$
T_{\Lambda_{3}}(A)=\{(x, y, z): x-2 y+z-1 \leq 0 \text { and }-2 z+y+z-1 \leq 0 \text { and } x, y, z \in \mathbb{R}\} .
$$

Part (c): For $\bar{x} \in \Lambda_{n}$, we denote by $I(\bar{x})$ the set of i such that $\bar{x}_{i}=0$. Note that $I(\bar{x})$ can be an empty set. Prove that:
i. $T_{\Lambda_{n}}(\bar{x})=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}: \alpha_{i} \geq 0 \forall i \in I(\bar{x})\right.$ and $\left.\sum_{i=1}^{n} \alpha_{i}=0\right\}$.

Since Λ_{n} is closed and convex, then,

$$
T_{\Lambda_{n}}(\bar{x})=\operatorname{cl} \underbrace{\left\{\lambda(x-\bar{x}): x \in \Lambda_{n} \text { and } \lambda \geq 0\right\}}_{A}
$$

Let $\alpha \in A$ be an arbitrary vector. Obtain $\alpha=\left(\lambda\left(x_{1}-\bar{x}_{1}\right), \ldots, \lambda\left(x_{n}-\bar{x}_{n}\right)\right)$.
Therefore, for all $i \in I(\bar{x}), \alpha_{i}=\lambda\left(x_{i}-\bar{x}_{i}\right)=\lambda x_{i} \geq 0$ since $\lambda, x_{i} \geq 0$.

Moreover, since $x, \bar{x} \in \Lambda_{n}$, then evaluate the sum to obtain:

$$
\sum_{i=1}^{n} \alpha_{i}=\lambda\left(\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \bar{x}_{i}\right)=\lambda(1-1)=0
$$

Thus $A=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}: \alpha_{i} \geq 0 \forall i \in I(\bar{x})\right.$ and $\left.\sum_{i=1}^{n} \alpha_{i}=0\right\}$.
Lemma: A is closed.
Let $\alpha_{k}=\left(\alpha_{1, k}, \ldots, \alpha_{n, k}\right) \in A$ be an arbitrary vector sequence with $\left(\alpha_{1, k}\right)_{k \in \mathbb{N}}, \ldots,\left(\alpha_{n, k}\right)_{k \in \mathbb{N}}$ being n arbitrary sequences in \mathbb{R} such that: $\lim _{k \rightarrow \infty} \alpha_{i, k}=\alpha_{i}$ for all $i \in\{1, \ldots, n\}$.

Since $\alpha_{k} \in A$ then obtain:

$$
\alpha_{i, k} \geq 0 \forall i \in I(\bar{x}) \text { and } \sum_{i=1}^{n} \alpha_{i, k}=0
$$

By the properties of real-valued limits obtain: $\lim _{k \rightarrow \infty} \alpha_{i, k} \geq \lim _{k \rightarrow \infty} 0 \Longrightarrow \alpha_{i} \geq 0$ for all $i \in I(\bar{x})$. Moreover, apply the limit to the sum:

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i, k}=\sum_{i=1}^{n} \lim _{k \rightarrow \infty} \alpha_{i, k}=\sum_{i=1}^{n} \alpha_{i}=\lim _{k \rightarrow \infty} 0=0
$$

Realize that the vector $\alpha=\lim _{k \rightarrow \infty} \alpha_{k}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in A$ since:

$$
\alpha_{i} \geq 0 \forall i \in I(\bar{x}) \text { and } \sum_{i=1}^{n} \alpha_{i}=0
$$

Therefore A is closed.

Conclusion: $T_{\Lambda_{n}}(\bar{x})=A=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}: \alpha_{i} \geq 0 \forall i \in I(\bar{x})\right.$ and $\left.\sum_{i=1}^{n} \alpha_{i}=0\right\}$. As desired.
ii. $N_{\Lambda_{n}}(\bar{x})=\left\{\left(\beta_{0}, \ldots, \beta_{0}\right): \beta_{0} \in \mathbb{R}\right\}+\left\{\left(\beta_{1}, \ldots, \beta_{n}\right): \beta_{i} \leq 0 \forall i \in I(\bar{x})\right.$ and 0 otherwise $\}$.

Since Λ_{n} is closed and convex, then its normal and tangent cones are closed and convex. Thus $N_{\Lambda_{n}}(\bar{x})=\left(T_{\Lambda_{n}}(\bar{x})\right)^{\circ}$.
Define $S=\left\{\left(\beta_{0}, \ldots, \beta_{0}\right): \beta_{0} \in \mathbb{R}\right\}+\left\{\left(\beta_{1}, \ldots, \beta_{n}\right): \beta_{i} \leq 0 \forall i \in I(\bar{x})\right.$ and 0 otherwise $\}$.
Inclusion 1: $N_{\Lambda_{n}}(\bar{x}) \subset S$
Case 1: $I(\bar{x})=\emptyset$
Let $\zeta \in N_{\Lambda_{n}}(\bar{x})$. Since $I(\bar{x})=\emptyset$ then $\beta_{i}=0$ for all i, and thus: $S=\left\{\left(\beta_{0}, \ldots, \beta_{0}\right): \beta_{0} \in \mathbb{R}\right\}$.

Prove by contradiction: Assume $\zeta \notin S$.
Therefore, there exists $J=\left\{j \in\{1, \ldots, n\}: \zeta_{j} \neq \zeta_{i}\right.$ for all $\left.i \notin J\right\} \neq \emptyset$. This means there is at least one index j for which the component ζ_{j} is unique among all other ζ_{i} for all $i \notin J$.

This implies that for all $i \notin J$, the components $\zeta_{i}=z$ are identical, and that for all $j \in J$, the components $\zeta_{j} \neq z$.

Since $\zeta \in N_{\Lambda_{n}}(\bar{x})$ then $\langle\zeta, \alpha\rangle \leq 0$ for all $\alpha \in T_{\Lambda_{n}}(\bar{x})$. Evaluate the inner product:
$\sum_{i=1}^{n} \zeta_{i} \alpha_{i}=\sum_{j \in J} \zeta_{j} \alpha_{j}+\sum_{i \notin J} \zeta_{i} \alpha_{i}=\sum_{j \in J} \zeta_{j} \alpha_{j}+z \sum_{i \notin J} \alpha_{i}=\sum_{j \in J} \zeta_{j} \alpha_{j}+z\left(0-\sum_{j \in J} \alpha_{j}\right)=\sum_{j \in J}\left(\zeta_{j}-z\right) \alpha_{j} \leq 0$
Choose a particular α such that $\operatorname{sgn}\left(\alpha_{j}\right)=\operatorname{sgn}\left(\zeta_{j}-z\right), \forall j \in J$ and that at least one $\alpha_{j} \neq 0$. This gives $\langle\zeta, \alpha\rangle=\sum_{j \in J}\left(\zeta_{j}-z\right) \alpha_{j}>0$. $(\operatorname{sgn}(\cdot)$ denotes the sign $)$
Contradiction.

Case 2: $I(\bar{x}) \neq \emptyset$
For ease of notation let $I=I(\bar{x})$ and $J=I(\bar{x})^{\mathrm{C}}$.
Let $\zeta \in N_{\Lambda_{n}}(\bar{x})$. Since $I \neq \emptyset$ then for any $s \in S$ its component: $s_{i}= \begin{cases}\beta_{0} & \forall i \in J \\ \beta_{0}+\beta_{i} & \forall i \in I\end{cases}$
Prove by contradiction: Assume $\zeta \notin S$.
Therefore, there exists $J_{0} \subset J: \zeta_{j_{0}} \neq \beta_{0}, \forall j_{0} \in J_{0} \neq \emptyset$.
Likewise, there exists $I_{0} \subset I: \zeta_{i_{0}} \neq \beta_{0}+\beta_{i}, \forall i_{0} \in I_{0} \neq \emptyset$.
This simply means that: $\begin{cases}\zeta_{i}=\beta_{0} & \forall i \in J-J_{0} \\ \zeta_{i}=\beta_{0}+\beta_{i} & \forall i \in I-I_{0} \\ \zeta_{i} \neq \beta_{0} & \forall i \in J_{0} \\ \zeta_{i} \neq \beta_{0}+\beta_{i} & \forall i \in I_{0}\end{cases}$
Since $\zeta \in N_{\Lambda_{n}}(\bar{x})$ then $\langle\zeta, \alpha\rangle \leq 0$ for all $\alpha \in T_{\Lambda_{n}}(\bar{x})$. Evaluate the inner product:

$$
\begin{aligned}
\sum_{i=1}^{n} \zeta_{i} \alpha_{i} & =\sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}}+\sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}}+\sum_{i \in I-I_{0}} \zeta_{i} \alpha_{i}+\sum_{j \in J-J_{0}} \zeta_{j} \alpha_{j} \\
& =\sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}}+\sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}}+\sum_{i \in I-I_{0}} \beta_{i} \alpha_{i}+\beta_{0}\left(\sum_{i \in I-I_{0}} \alpha_{i}+\sum_{j \in J-J_{0}} \alpha_{j}\right) \\
& =\sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}}+\sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}}+\sum_{i \in I-I_{0}} \beta_{i} \alpha_{i}+\beta_{0}\left(0-\sum_{i \in I_{0}} \alpha_{i_{0}}-\sum_{j \in J_{0}} \alpha_{j_{0}}\right) \\
& =\sum_{i_{0} \in I_{0}}\left(\zeta_{i_{0}}-\beta_{0}\right) \alpha_{i_{0}}+\sum_{j_{0} \in J_{0}}\left(\zeta_{j_{0}}-\beta_{0}\right) \alpha_{j_{0}}+\sum_{i \in I-I_{0}} \beta_{i} \alpha_{i} \leq 0
\end{aligned}
$$

Before choosing an instance of α realize that $\left(\zeta_{i_{0}}-\beta_{0}\right),\left(\zeta_{j_{0}}-\beta_{0}\right), \alpha_{j_{0}} \in \mathbb{R}$ and that $\alpha_{i_{0}}, \alpha_{i} \geq 0$. (Refer to sums to identify which indices belong to which set)

Choose a particular α such that $\alpha_{i}=0, \forall i \in I$, and that $\operatorname{sgn}\left(\alpha_{j_{0}}\right)=\operatorname{sgn}\left(\zeta_{j_{0}}-z\right), \forall j_{0} \in J_{0}$ and that at least one $\alpha_{j_{0}} \neq 0$. This gives $\langle\zeta, \alpha\rangle=\sum_{j_{0} \in J_{0}}\left(\zeta_{j}-z\right) \alpha_{j_{0}}>0$.

Contradiction.

Inclusion 2: $S \subset N_{\Lambda_{n}}(\bar{x})$
Let $s \in S$ be arbitrary. As such $s=\left(\beta_{0}+\beta_{1}, \ldots, \beta_{0}+\beta_{n}\right)$. For all $\alpha \in T_{\Lambda_{n}}(\bar{x})$, obtain:

$$
\langle s, \alpha\rangle=\sum_{i=1}^{n}\left(\beta_{0}+\beta_{i}\right) \alpha_{i}=\beta_{0} \sum_{i=1}^{n} \alpha_{i}+\sum_{i \in I(\bar{x})} \beta_{i} \alpha_{i}+\sum_{i \notin I(\bar{x})} \beta_{i} \alpha_{i}=\sum_{i \in I(\bar{x})} \beta_{i} \alpha_{i} \leq 0
$$

since $\beta_{i} \leq 0$ and $\alpha_{i} \geq 0$ for all $i \in I(\bar{x})$ and $\beta_{i}=0$ for all $i \notin I(\bar{x})$ and $\sum_{i=1}^{n} \alpha_{i}=0$.
Observe that $\langle s, a\rangle \leq 0$ for all $\alpha \in T_{\Lambda_{n}}(\bar{x})$ and conclude that $s \in N_{\Lambda_{n}}(\bar{x})$, as desired.

Part (d): Now let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be convex and differentiable. Prove that $\bar{x} \in \Lambda_{n}$ is a global minimum of f over Λ_{n} iff there is a constant \bar{c} such that

$$
\begin{cases}f_{x_{i}}(\bar{x})=\bar{c} & \forall i \notin I(\bar{x}) \\ f_{x_{i}}(\bar{x}) \geq \bar{c} & \forall i \in I(\bar{x})\end{cases}
$$

Direction $1(\Longrightarrow)$: Assume $\bar{x} \in \Lambda_{n}$ is a global minimum of f over Λ_{n}.
Since f is convex and differentiable, and that Λ_{n} is closed and convex, then:
Having $0 \in \nabla f(\bar{x})+N_{\Lambda_{n}}(\bar{x})$, then there exists a vector $s \in N_{\Lambda_{n}}(\bar{x})$ such that $\nabla f(\bar{x})=-s$.

$$
f_{x_{i}}(\bar{x})=-s_{i}= \begin{cases}-\beta_{0} & \forall i \notin I(\bar{x}) \\ -\beta_{0}-\beta_{i} & \forall i \in I(\bar{x})\end{cases}
$$

It is equivalent to state the existence of the constant $\bar{c}=-\beta_{0}$.
Knowing that $\beta_{i} \leq 0$ for all $i \in I(\bar{x})$ then $-\beta_{0}-\beta_{i}=\bar{c}-\beta_{i} \geq \bar{c}$.

The desired result is thus obtained.

Direction $2(\Longleftarrow)$: There exists a constant \bar{c} such that $f_{x_{i}}(\bar{x})$ is given as above.
The function f is convex and differentiable over \mathbb{R}, and $\bar{x} \in \Lambda_{n}$.
Evaluate the inner product $\langle x-\bar{x}, \nabla f(\bar{x})\rangle, \forall x \in \Lambda_{n}$.
Realize that $f_{x_{i}}=\bar{c}$ or $f_{x_{i}} \geq \bar{c}$, therefore $f_{x_{i}} \geq \bar{c}$.
Thus, $\langle x-\bar{x}, \nabla f(\bar{x})\rangle=\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right) f_{x_{i}}(\bar{x}) \geq \bar{x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)=\bar{c}(1-1)=0, \forall x \in \Lambda_{n}$.
Conclude that \bar{x} is a local minimum over Λ_{n} since $\langle x-\bar{x}, \nabla f(\bar{x})\rangle \geq 0, \forall x \in \Lambda_{n}$. Since Λ_{n} is closed and also convex, then obtain the desired result.

Part (e): Minimize $f(x, y, z)=x^{2}+2 y^{2}+z^{2}$ and $g(x, y, z)=x+2 y+z$ over Λ_{3}.
Here f and g are both convex and clearly differentiable.

The Hessian $\nabla^{2} f=\operatorname{diag}(2,4,2)$ is positive-definite since all eigenvalues are strictly positive, thus f is strictly convex. The function g is convex because it is linear.

Obtain from previous results that $\Lambda_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right.$ and $\left.x, y, z \geq 0\right\}$. Also proven earlier was that Λ_{3} is closed and convex.

Let $(\bar{x}, \bar{y}, \bar{z})$ be the global minimum of f over Λ_{3} and $\left(x^{*}, y^{*}, z^{*}\right)$ be that of g. Compute the gradients $\nabla f=(2 x, 4 y, 2 z)$ and $\nabla g=(1,2,1)$.

Minimize f :
Assume that the optimal point is not at the boundaries, thus $I(\bar{x}, \bar{y}, \bar{z})=\emptyset$.
From Part (d) obtain that $\nabla f(\bar{x}, \bar{y}, \bar{z})=(\bar{c}, \bar{c}, \bar{c})=(2 \bar{x}, 4 \bar{y}, 2 \bar{z})$.
The point $(\bar{x}, \bar{y}, \bar{z})=\frac{1}{4}(2 \bar{c}, \bar{c}, 2 \bar{c})$. And since $\bar{x} \in \Lambda_{3}$, then: $\bar{x}+\bar{y}+\bar{z}=\frac{5}{4} \bar{c}=1 \Longleftrightarrow \bar{c}=\frac{4}{5}$.

Check the boundaries; at the vertices $f(1,0,0)=f(0,0,1)=1$ and $f(0,1,0)=2$.
Edge 1: $f(\lambda, 0,1-\lambda)=2 \lambda^{2}-2 \lambda+1$. Set $f^{\prime}(\lambda)=0 \Longrightarrow \lambda=\frac{1}{2} \Longrightarrow f=\frac{1}{2}$.
Edge 2: $f(0, \lambda, 1-\lambda)=3 \lambda^{2}-2 \lambda+1$. Set $f^{\prime}(\lambda)=0 \Longrightarrow \lambda=\frac{1}{3} \Longrightarrow f=\frac{2}{3}$.
Edge 3: $f(\lambda, 1-\lambda, 0)=3 \lambda^{2}-4 \lambda+2$. Set $f^{\prime}(\lambda)=0 \Longrightarrow \lambda=\frac{2}{3} \Longrightarrow f=\frac{2}{3}$.
Here $\lambda \in] 0,1[$. These are to be compared against the assumed optimal point.

The optimal point is thus $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{2}{5}, \frac{1}{5}, \frac{2}{5}\right)$ and the optimum is $f^{*}=\frac{2}{5}$.

Minimize g :

Since g is linear then its minimal point $\left(x^{*}, y^{*}, z^{*}\right) \in \operatorname{bdry}\left(\Lambda_{3}\right)$. This is further demonstrated by the fact that $\nabla g\left(x^{*}, y^{*}, z^{*}\right)=(\bar{c}, \bar{c}, \bar{c})=(1,2,1)$ is a contradiction.

Check the boundaries; at the vertices $g(1,0,0)=g(0,0,1)=1$ and $g(0,1,0)=2$.
Edge 1: $g(\lambda, 0,1-\lambda)=\lambda+1-\lambda=1$.
Edge 2: $g(0, \lambda, 1-\lambda)=\lambda+1 \geq 1$.
Edge 3: $g(\lambda, 1-\lambda, 0)=2-\lambda \geq 1$.
Here $\lambda \in] 0,1[$.
Conclude that $\left(x^{*}, y^{*}, z^{*}\right)=(\lambda, 0,1-\lambda)$ for all $\lambda \in[0,1]$ are the global minimal points and that $g^{*}=1$ is the global minimum.

