Solution to "Normal and Tangent Cones"

In \mathbb{R}^n , we consider the set:

$$\Lambda_n = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0 \ \forall i \text{ and } \sum_{i=1}^n x_i = 1 \right\}$$

Part (a): Verify that Λ_n is closed and convex.

Convexity

Let $x \in \Lambda_n$ be an arbitrary vector.

It can be decomposed using the canonical basis into $x = (x_1, \ldots, x_n) = \sum_{i=1}^n x_i \hat{\mathbf{e}}_i$. Since $x_i \ge 0$ for all *i* and $\sum_{i=1}^n x_i = 1$ then *x* is a convex combination of unit vectors $\hat{\mathbf{e}}_i$.

The convex hull of $\{\hat{\mathbf{e}}_1, \ldots, \hat{\mathbf{e}}_n\}$ is the set of all convex combinations of its elements $\hat{\mathbf{e}}_i$, that is, the set of all x.

Thus, $\Lambda_n = \operatorname{conv}(\{\hat{\mathbf{e}}_1, \dots, \hat{\mathbf{e}}_n\})$ is convex.

Closedness

Let $x_k = (x_{1,k}, \ldots, x_{n,k}) \in \Lambda_n$ be an arbitrary vector sequence with $(x_{1,k})_{k \in \mathbb{N}}, \ldots, (x_{n,k})_{k \in \mathbb{N}}$ being *n* arbitrary sequences in \mathbb{R} such that: $\lim_{k \to \infty} x_{i,k} = x_i$ for all $i \in \{1, \ldots, n\}$.

Since $x_k \in \Lambda_n$ then obtain:

$$x_{i,k} \ge 0 \ \forall i \in \{1, \dots, n\} \text{ and } \sum_{i=1}^{n} x_{i,k} = 1$$

By the properties of real-valued limits obtain that: $\lim_{k\to\infty} x_{i,k} \ge \lim_{k\to\infty} 0 \Longrightarrow x_i \ge 0$ for all *i*. Moreover, apply the limit to the sum:

$$\lim_{k \to \infty} \sum_{i=1}^{n} x_{i,k} = \sum_{i=1}^{n} \lim_{k \to \infty} x_{i,k} = \sum_{i=1}^{n} x_i = \lim_{k \to \infty} 1 = 1$$

Realize that the vector $x = \lim_{k \to \infty} x_k = (x_1, \dots, x_n) \in \Lambda_n$ since:

$$x_i \ge 0 \ \forall i \in \{1, \dots, n\} \text{ and } \sum_{i=1}^n x_i = 1$$

Therefore Λ_n is closed.

Part (b): Sketch Λ_3 and find geometrically (without an analytic proof) $N_{\Lambda_3}(x)$ and $T_{\Lambda_3}(x)$ at the points $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (0, \frac{1}{2}, \frac{1}{2})$ and (0, 0, 1).

For n = 3, label $(x_1, x_2, x_3) = (x, y, z) \in \mathbb{R}^3$. Here $\Lambda_3 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1 \text{ and } x, y, z \ge 0\} = \operatorname{conv}(\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3).$

Geometrically Λ_3 is the surface bounded equilateral triangle formed by (1, 0, 0), (0, 1, 0), and (0, 0, 1).

For the interior point $A = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, the normal cone is the orthogonal straight line passing through A.

$$N_{\Lambda_3}(A) = \{(t, t, t) : \forall t \in \mathbb{R}\}.$$

Consequently, the tangent cone at A is the plane containing Λ_3 :

$$T_{\Lambda_3}(A) = \{ (x, y, z) : x + y + z = 1 \text{ and } x, y, z \in \mathbb{R} \} = \operatorname{aff}((\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3)).$$

For the edge point $A = (0, \frac{1}{2}, \frac{1}{2})$, the normal cone is the plane line passing through A and orthogonal to the edge containing A. This is the plane y - z = 0.

$$N_{\Lambda_3}(A) = \{(x, y, z) : y - z = 0 \text{ and } x, y, z \in \mathbb{R}\}.$$

Consequently, the tangent cone at A is also the plane containing Λ_3 :

 $T_{\Lambda_3}(A) = \{(x, y, z) : x + y + z = 1 \text{ and } x, y, z \in \mathbb{R}\} = \operatorname{aff}((\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3)).$

For the vertex A = (0, 0, 1), the normal cone is the intersection of the epigraphs of the two planes orthogonal at A to the edges containing A.

This is the space above both planes x - z + 1 = 0 and y - z + 1 = 0.

 $N_{\Lambda_3}(A) = \{ (x, y, z) : x - z + 1 \ge 0 \text{ and } y - z + 1 \ge 0 \text{ and } x, y, z \in \mathbb{R} \}.$

Consequently, the tangent cone is the polar cone, that is, the intersection of the hypographs of the two planes passing through A and orthogonal to the edges containing A.

This is the space below both planes x - 2y + z - 1 = 0 and -2x + y + z - 1 = 0.

$$T_{\Lambda_3}(A) = \{ (x, y, z) : x - 2y + z - 1 \le 0 \text{ and } -2z + y + z - 1 \le 0 \text{ and } x, y, z \in \mathbb{R} \}.$$

Part (c): For $\bar{x} \in \Lambda_n$, we denote by $I(\bar{x})$ the set of *i* such that $\bar{x}_i = 0$. Note that $I(\bar{x})$ can be an empty set. Prove that:

i.
$$T_{\Lambda_n}(\bar{x}) = \{(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n : \alpha_i \ge 0 \ \forall i \in I(\bar{x}) \text{ and } \sum_{i=1}^n \alpha_i = 0\}.$$

Since Λ_n is closed and convex, then,

$$T_{\Lambda_n}(\bar{x}) = \operatorname{cl}\underbrace{\{\lambda(x-\bar{x}) : x \in \Lambda_n \text{ and } \lambda \ge 0\}}_A$$

Let $\alpha \in A$ be an arbitrary vector. Obtain $\alpha = (\lambda(x_1 - \bar{x}_1), \dots, \lambda(x_n - \bar{x}_n))$. Therefore, for all $i \in I(\bar{x})$, $\alpha_i = \lambda(x_i - \bar{x}_i) = \lambda x_i \ge 0$ since $\lambda, x_i \ge 0$.

Moreover, since $x, \bar{x} \in \Lambda_n$, then evaluate the sum to obtain:

$$\sum_{i=1}^{n} \alpha_i = \lambda \left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x}_i \right) = \lambda (1-1) = 0$$

Thus $A = \{(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n : \alpha_i \ge 0 \ \forall i \in I(\bar{x}) \text{ and } \sum_{i=1}^n \alpha_i = 0\}.$

Lemma: A is closed.

Let $\alpha_k = (\alpha_{1,k}, \ldots, \alpha_{n,k}) \in A$ be an arbitrary vector sequence with $(\alpha_{1,k})_{k \in \mathbb{N}}, \ldots, (\alpha_{n,k})_{k \in \mathbb{N}}$ being *n* arbitrary sequences in \mathbb{R} such that: $\lim_{k \to \infty} \alpha_{i,k} = \alpha_i$ for all $i \in \{1, \ldots, n\}$.

Since $\alpha_k \in A$ then obtain:

$$\alpha_{i,k} \ge 0 \ \forall i \in I(\bar{x}) \text{ and } \sum_{i=1}^{n} \alpha_{i,k} = 0$$

By the properties of real-valued limits obtain: $\lim_{k\to\infty} \alpha_{i,k} \ge \lim_{k\to\infty} 0 \Longrightarrow \alpha_i \ge 0$ for all $i \in I(\bar{x})$. Moreover, apply the limit to the sum:

$$\lim_{k \to \infty} \sum_{i=1}^{n} \alpha_{i,k} = \sum_{i=1}^{n} \lim_{k \to \infty} \alpha_{i,k} = \sum_{i=1}^{n} \alpha_{i} = \lim_{k \to \infty} 0 = 0$$

Realize that the vector $\alpha = \lim_{k \to \infty} \alpha_k = (\alpha_1, \dots, \alpha_n) \in A$ since:

$$\alpha_i \ge 0 \ \forall i \in I(\bar{x}) \text{ and } \sum_{i=1}^n \alpha_i = 0$$

Therefore A is closed.

Conclusion: $T_{\Lambda_n}(\bar{x}) = A = \{(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n : \alpha_i \ge 0 \ \forall i \in I(\bar{x}) \text{ and } \sum_{i=1}^n \alpha_i = 0\}.$ As desired. ii. $N_{\Lambda_n}(\bar{x}) = \{(\beta_0, \dots, \beta_0) : \beta_0 \in \mathbb{R}\} + \{(\beta_1, \dots, \beta_n) : \beta_i \leq 0 \ \forall i \in I(\bar{x}) \text{ and } 0 \text{ otherwise}\}.$

Since Λ_n is closed and convex, then its normal and tangent cones are closed and convex. Thus $N_{\Lambda_n}(\bar{x}) = (T_{\Lambda_n}(\bar{x}))^{\circ}$. Define $S = \{(\beta_0, \ldots, \beta_0) : \beta_0 \in \mathbb{R}\} + \{(\beta_1, \ldots, \beta_n) : \beta_i \leq 0 \ \forall i \in I(\bar{x}) \text{ and } 0 \text{ otherwise}\}.$

Inclusion 1: $N_{\Lambda_n}(\bar{x}) \subset S$

Case 1: $I(\bar{x}) = \emptyset$ Let $\zeta \in N_{\Lambda_n}(\bar{x})$. Since $I(\bar{x}) = \emptyset$ then $\beta_i = 0$ for all i, and thus: $S = \{(\beta_0, \dots, \beta_0) : \beta_0 \in \mathbb{R}\}.$

Prove by contradiction: Assume $\zeta \notin S$.

Therefore, there exists $J = \{j \in \{1, ..., n\} : \zeta_j \neq \zeta_i \text{ for all } i \notin J\} \neq \emptyset$. This means there is at least one index j for which the component ζ_j is unique among all other ζ_i for all $i \notin J$.

This implies that for all $i \notin J$, the components $\zeta_i = z$ are identical, and that for all $j \in J$, the components $\zeta_j \neq z$.

Since $\zeta \in N_{\Lambda_n}(\bar{x})$ then $\langle \zeta, \alpha \rangle \leq 0$ for all $\alpha \in T_{\Lambda_n}(\bar{x})$. Evaluate the inner product:

$$\sum_{i=1}^{n} \zeta_{i} \alpha_{i} = \sum_{j \in J} \zeta_{j} \alpha_{j} + \sum_{i \notin J} \zeta_{i} \alpha_{i} = \sum_{j \in J} \zeta_{j} \alpha_{j} + z \sum_{i \notin J} \alpha_{i} = \sum_{j \in J} \zeta_{j} \alpha_{j} + z \left(0 - \sum_{j \in J} \alpha_{j} \right) = \sum_{j \in J} (\zeta_{j} - z) \alpha_{j} \le 0$$

Choose a particular α such that $\operatorname{sgn}(\alpha_j) = \operatorname{sgn}(\zeta_j - z), \forall j \in J$ and that at least one $\alpha_j \neq 0$. This gives $\langle \zeta, \alpha \rangle = \sum_{j \in J} (\zeta_j - z) \alpha_j > 0$. (sgn(·) denotes the sign) **Contradiction.** **Case 2:** $I(\bar{x}) \neq \emptyset$ For ease of notation let $I = I(\bar{x})$ and $J = I(\bar{x})^{C}$.

Let $\zeta \in N_{\Lambda_n}(\bar{x})$. Since $I \neq \emptyset$ then for any $s \in S$ its component: $s_i = \begin{cases} \beta_0 & \forall i \in J \\ \beta_0 + \beta_i & \forall i \in I \end{cases}$

Prove by contradiction: Assume $\zeta \notin S$. Therefore, there exists $J_0 \subset J : \zeta_{j_0} \neq \beta_0, \forall j_0 \in J_0 \neq \emptyset$. Likewise, there exists $I_0 \subset I : \zeta_{i_0} \neq \beta_0 + \beta_i, \forall i_0 \in I_0 \neq \emptyset$.

This simply means that:
$$\begin{cases} \zeta_i = \beta_0 & \forall i \in J - J_0 \\ \zeta_i = \beta_0 + \beta_i & \forall i \in I - I_0 \\ \zeta_i \neq \beta_0 & \forall i \in J_0 \\ \zeta_i \neq \beta_0 + \beta_i & \forall i \in I_0 \end{cases}$$

Since $\zeta \in N_{\Lambda_n}(\bar{x})$ then $\langle \zeta, \alpha \rangle \leq 0$ for all $\alpha \in T_{\Lambda_n}(\bar{x})$. Evaluate the inner product:

$$\sum_{i=1}^{n} \zeta_{i} \alpha_{i} = \sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}} + \sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}} + \sum_{i \in I - I_{0}} \zeta_{i} \alpha_{i} + \sum_{j \in J - J_{0}} \zeta_{j} \alpha_{j}$$

$$= \sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}} + \sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}} + \sum_{i \in I - I_{0}} \beta_{i} \alpha_{i} + \beta_{0} \left(\sum_{i \in I - I_{0}} \alpha_{i} + \sum_{j \in J - J_{0}} \alpha_{j} \right)$$

$$= \sum_{i_{0} \in I_{0}} \zeta_{i_{0}} \alpha_{i_{0}} + \sum_{j_{0} \in J_{0}} \zeta_{j_{0}} \alpha_{j_{0}} + \sum_{i \in I - I_{0}} \beta_{i} \alpha_{i} + \beta_{0} \left(0 - \sum_{i \in I_{0}} \alpha_{i_{0}} - \sum_{j \in J_{0}} \alpha_{j_{0}} \right)$$

$$= \sum_{i_{0} \in I_{0}} (\zeta_{i_{0}} - \beta_{0}) \alpha_{i_{0}} + \sum_{j_{0} \in J_{0}} (\zeta_{j_{0}} - \beta_{0}) \alpha_{j_{0}} + \sum_{i \in I - I_{0}} \beta_{i} \alpha_{i} \le 0$$

Before choosing an instance of α realize that $(\zeta_{i_0} - \beta_0), (\zeta_{j_0} - \beta_0), \alpha_{j_0} \in \mathbb{R}$ and that $\alpha_{i_0}, \alpha_i \geq 0$. (Refer to sums to identify which indices belong to which set)

Choose a particular α such that $\alpha_i = 0$, $\forall i \in I$, and that $\operatorname{sgn}(\alpha_{j_0}) = \operatorname{sgn}(\zeta_{j_0} - z)$, $\forall j_0 \in J_0$ and that at least one $\alpha_{j_0} \neq 0$. This gives $\langle \zeta, \alpha \rangle = \sum_{j_0 \in J_0} (\zeta_j - z) \alpha_{j_0} > 0$. Contradiction.

Inclusion 2: $S \subset N_{\Lambda_n}(\bar{x})$ Let $s \in S$ be arbitrary. As such $s = (\beta_0 + \beta_1, \dots, \beta_0 + \beta_n)$. For all $\alpha \in T_{\Lambda_n}(\bar{x})$, obtain:

$$\langle s, \alpha \rangle = \sum_{i=1}^{n} (\beta_0 + \beta_i) \alpha_i = \beta_0 \sum_{i=1}^{n} \alpha_i + \sum_{i \in I(\bar{x})} \beta_i \alpha_i + \sum_{i \notin I(\bar{x})} \beta_i \alpha_i = \sum_{i \in I(\bar{x})} \beta_i \alpha_i \le 0,$$

since $\beta_i \leq 0$ and $\alpha_i \geq 0$ for all $i \in I(\bar{x})$ and $\beta_i = 0$ for all $i \notin I(\bar{x})$ and $\sum_{i=1}^n \alpha_i = 0$.

Observe that $\langle s, a \rangle \leq 0$ for all $\alpha \in T_{\Lambda_n}(\bar{x})$ and conclude that $s \in N_{\Lambda_n}(\bar{x})$, as desired.

Part (d): Now let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be convex and differentiable. Prove that $\bar{x} \in \Lambda_n$ is a global minimum of f over Λ_n iff there is a constant \bar{c} such that

$$\begin{cases} f_{x_i}(\bar{x}) = \bar{c} & \forall i \notin I(\bar{x}) \\ f_{x_i}(\bar{x}) \ge \bar{c} & \forall i \in I(\bar{x}) \end{cases}$$

Direction 1 (\Longrightarrow): Assume $\bar{x} \in \Lambda_n$ is a global minimum of f over Λ_n . Since f is convex and differentiable, and that Λ_n is closed and convex, then: Having $0 \in \nabla f(\bar{x}) + N_{\Lambda_n}(\bar{x})$, then there exists a vector $s \in N_{\Lambda_n}(\bar{x})$ such that $\nabla f(\bar{x}) = -s$.

$$f_{x_i}(\bar{x}) = -s_i = \begin{cases} -\beta_0 & \forall i \notin I(\bar{x}) \\ -\beta_0 - \beta_i & \forall i \in I(\bar{x}) \end{cases}$$

It is equivalent to state the existence of the constant $\bar{c} = -\beta_0$. Knowing that $\beta_i \leq 0$ for all $i \in I(\bar{x})$ then $-\beta_0 - \beta_i = \bar{c} - \beta_i \geq \bar{c}$.

The desired result is thus obtained.

Direction 2 (\Leftarrow): There exists a constant \bar{c} such that $f_{x_i}(\bar{x})$ is given as above. The function f is convex and differentiable over \mathbb{R} , and $\bar{x} \in \Lambda_n$. Evaluate the inner product $\langle x - \bar{x}, \nabla f(\bar{x}) \rangle$, $\forall x \in \Lambda_n$.

Realize that $f_{x_i} = \bar{c}$ or $f_{x_i} \ge \bar{c}$, therefore $f_{x_i} \ge \bar{c}$. Thus, $\langle x - \bar{x}, \nabla f(\bar{x}) \rangle = \sum_{i=1}^n (x_i - \bar{x}_i) f_{x_i}(\bar{x}) \ge \bar{x} \sum_{i=1}^n (x_i - \bar{x}_i) = \bar{c}(1-1) = 0, \ \forall x \in \Lambda_n.$

Conclude that \bar{x} is a local minimum over Λ_n since $\langle x - \bar{x}, \nabla f(\bar{x}) \rangle \ge 0$, $\forall x \in \Lambda_n$. Since Λ_n is closed and also convex, then obtain the desired result. **Part (e):** Minimize $f(x, y, z) = x^2 + 2y^2 + z^2$ and g(x, y, z) = x + 2y + z over Λ_3 . Here f and g are both convex and clearly differentiable.

The Hessian $\nabla^2 f = \text{diag}(2, 4, 2)$ is positive-definite since all eigenvalues are strictly positive, thus f is strictly convex. The function g is convex because it is linear.

Obtain from previous results that $\Lambda_3 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1 \text{ and } x, y, z \ge 0\}$. Also proven earlier was that Λ_3 is closed and convex.

Let $(\bar{x}, \bar{y}, \bar{z})$ be the global minimum of f over Λ_3 and (x^*, y^*, z^*) be that of g. Compute the gradients $\nabla f = (2x, 4y, 2z)$ and $\nabla g = (1, 2, 1)$.

Minimize *f*:

Assume that the optimal point is not at the boundaries, thus $I(\bar{x}, \bar{y}, \bar{z}) = \emptyset$. From Part (d) obtain that $\nabla f(\bar{x}, \bar{y}, \bar{z}) = (\bar{c}, \bar{c}, \bar{c}) = (2\bar{x}, 4\bar{y}, 2\bar{z})$.

The point $(\bar{x}, \bar{y}, \bar{z}) = \frac{1}{4}(2\bar{c}, \bar{c}, 2\bar{c})$. And since $\bar{x} \in \Lambda_3$, then: $\bar{x} + \bar{y} + \bar{z} = \frac{5}{4}\bar{c} = 1 \iff \bar{c} = \frac{4}{5}$.

Check the boundaries; at the vertices f(1,0,0) = f(0,0,1) = 1 and f(0,1,0) = 2. Edge 1: $f(\lambda,0,1-\lambda) = 2\lambda^2 - 2\lambda + 1$. Set $f'(\lambda) = 0 \Longrightarrow \lambda = \frac{1}{2} \Longrightarrow f = \frac{1}{2}$. Edge 2: $f(0,\lambda,1-\lambda) = 3\lambda^2 - 2\lambda + 1$. Set $f'(\lambda) = 0 \Longrightarrow \lambda = \frac{1}{3} \Longrightarrow f = \frac{2}{3}$. Edge 3: $f(\lambda,1-\lambda,0) = 3\lambda^2 - 4\lambda + 2$. Set $f'(\lambda) = 0 \Longrightarrow \lambda = \frac{2}{3} \Longrightarrow f = \frac{2}{3}$. Here $\lambda \in [0,1[$. These are to be compared against the assumed optimal point.

The optimal point is thus $(\bar{x}, \bar{y}, \bar{z}) = (\frac{2}{5}, \frac{1}{5}, \frac{2}{5})$ and the optimum is $f^* = \frac{2}{5}$.

Minimize g:

Since g is linear then its minimal point $(x^*, y^*, z^*) \in bdry(\Lambda_3)$. This is further demonstrated by the fact that $\nabla g(x^*, y^*, z^*) = (\bar{c}, \bar{c}, \bar{c}) = (1, 2, 1)$ is a contradiction.

Check the boundaries; at the vertices g(1,0,0) = g(0,0,1) = 1 and g(0,1,0) = 2. Edge 1: $g(\lambda, 0, 1 - \lambda) = \lambda + 1 - \lambda = 1$. Edge 2: $g(0, \lambda, 1 - \lambda) = \lambda + 1 \ge 1$. Edge 3: $g(\lambda, 1 - \lambda, 0) = 2 - \lambda \ge 1$. Here $\lambda \in]0, 1[$.

Conclude that $(x^*, y^*, z^*) = (\lambda, 0, 1 - \lambda)$ for all $\lambda \in [0, 1]$ are the global minimal points and that $g^* = 1$ is the global minimum.