
James Akl Convex Analysis: Select Works

Solution to “Normal and Tangent Cones”

In Rn, we consider the set:

Λn =

{
(x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀i and

n∑
i=1

xi = 1

}

Part (a): Verify that Λn is closed and convex.

Convexity

Let x ∈ Λn be an arbitrary vector.

It can be decomposed using the canonical basis into x = (x1, . . . , xn) =
∑n

i=1 xiêi.

Since xi ≥ 0 for all i and
∑n

i=1 xi = 1 then x is a convex combination of unit vectors êi.

The convex hull of {ê1, . . . , ên} is the set of all convex combinations of its elements êi,

that is, the set of all x.

Thus, Λn = conv
(
{ê1, . . . , ên}

)
is convex.

Closedness

Let xk = (x1,k, . . . , xn,k) ∈ Λn be an arbitrary vector sequence with (x1,k)k∈N, . . . , (xn,k)k∈N
being n arbitrary sequences in R such that: lim

k→∞
xi,k = xi for all i ∈ {1, . . . , n}.

Since xk ∈ Λn then obtain:

xi,k ≥ 0 ∀i ∈ {1, . . . , n} and
n∑

i=1

xi,k = 1

By the properties of real-valued limits obtain that: lim
k→∞

xi,k ≥ lim
k→∞

0 =⇒ xi ≥ 0 for all i.

Moreover, apply the limit to the sum:

lim
k→∞

n∑
i=1

xi,k =
n∑

i=1

lim
k→∞

xi,k =
n∑

i=1

xi = lim
k→∞

1 = 1

Realize that the vector x = lim
k→∞

xk = (x1, . . . , xn) ∈ Λn since:

xi ≥ 0 ∀i ∈ {1, . . . , n} and
n∑

i=1

xi = 1

Therefore Λn is closed.
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Part (b): Sketch Λ3 and find geometrically (without an analytic proof) NΛ3(x) and TΛ3(x)

at the points x =
(

1
3
, 1

3
, 1

3

)
,
(
0, 1

2
, 1

2

)
and (0, 0, 1).

For n = 3, label (x1, x2, x3) = (x, y, z) ∈ R3.

Here Λ3 =
{

(x, y, z) ∈ R3 : x+ y + z = 1 and x, y, z ≥ 0
}

= conv
(
ê1, ê2, ê3

)
.

Geometrically Λ3 is the surface bounded equilateral triangle formed by (1, 0, 0), (0, 1, 0),

and (0, 0, 1).
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For the interior point A =
(

1
3
, 1

3
, 1

3

)
, the normal cone is the orthogonal straight line passing

through A.

NΛ3(A) = {(t, t, t) : ∀t ∈ R}.

Consequently, the tangent cone at A is the plane containing Λ3:

TΛ3(A) = {(x, y, z) : x+ y + z = 1 and x, y, z ∈ R} = aff(
(
ê1, ê2, ê3

)
).
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For the edge point A =
(
0, 1

2
, 1

2

)
, the normal cone is the plane line passing through A and

orthogonal to the edge containing A. This is the plane y − z = 0.

NΛ3(A) = {(x, y, z) : y − z = 0 and x, y, z ∈ R}.

Consequently, the tangent cone at A is also the plane containing Λ3:

TΛ3(A) = {(x, y, z) : x+ y + z = 1 and x, y, z ∈ R} = aff(
(
ê1, ê2, ê3

)
).
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For the vertex A =
(
0, 0, 1

)
, the normal cone is the intersection of the epigraphs of the two

planes orthogonal at A to the edges containing A.

This is the space above both planes x− z + 1 = 0 and y − z + 1 = 0.

NΛ3(A) = {(x, y, z) : x− z + 1 ≥ 0 and y − z + 1 ≥ 0 and x, y, z ∈ R}.
Consequently, the tangent cone is the polar cone, that is, the intersection of the hypographs

of the two planes passing through A and orthogonal to the edges containing A.

This is the space below both planes x− 2y + z − 1 = 0 and −2x+ y + z − 1 = 0.

TΛ3(A) = {(x, y, z) : x− 2y + z − 1 ≤ 0 and − 2z + y + z − 1 ≤ 0 and x, y, z ∈ R}.
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Part (c): For x̄ ∈ Λn, we denote by I(x̄) the set of i such that x̄i = 0. Note that I(x̄) can

be an empty set. Prove that:

i. TΛn(x̄) =
{

(α1, . . . , αn) ∈ Rn : αi ≥ 0 ∀i ∈ I(x̄) and
∑n

i=1 αi = 0
}

.

Since Λn is closed and convex, then,

TΛn(x̄) = cl
{
λ(x− x̄) : x ∈ Λn and λ ≥ 0

}︸ ︷︷ ︸
A

Let α ∈ A be an arbitrary vector. Obtain α =
(
λ(x1 − x̄1), . . . , λ(xn − x̄n)

)
.

Therefore, for all i ∈ I(x̄), αi = λ(xi − x̄i) = λxi ≥ 0 since λ, xi ≥ 0.

Moreover, since x, x̄ ∈ Λn, then evaluate the sum to obtain:

n∑
i=1

αi = λ

(
n∑

i=1

xi −
n∑

i=1

x̄i

)
= λ(1− 1) = 0

Thus A =
{

(α1, . . . , αn) ∈ Rn : αi ≥ 0 ∀i ∈ I(x̄) and
∑n

i=1 αi = 0
}

.

Lemma : A is closed.

Let αk = (α1,k, . . . , αn,k) ∈ A be an arbitrary vector sequence with (α1,k)k∈N, . . . , (αn,k)k∈N
being n arbitrary sequences in R such that: lim

k→∞
αi,k = αi for all i ∈ {1, . . . , n}.

Since αk ∈ A then obtain:

αi,k ≥ 0 ∀i ∈ I(x̄) and
n∑

i=1

αi,k = 0

By the properties of real-valued limits obtain: lim
k→∞

αi,k ≥ lim
k→∞

0 =⇒ αi ≥ 0 for all i ∈ I(x̄).

Moreover, apply the limit to the sum:

lim
k→∞

n∑
i=1

αi,k =
n∑

i=1

lim
k→∞

αi,k =
n∑

i=1

αi = lim
k→∞

0 = 0

Realize that the vector α = lim
k→∞

αk = (α1, . . . , αn) ∈ A since:

αi ≥ 0 ∀i ∈ I(x̄) and
n∑

i=1

αi = 0

Therefore A is closed.

Conclusion : TΛn(x̄) = A =
{

(α1, . . . , αn) ∈ Rn : αi ≥ 0 ∀i ∈ I(x̄) and
∑n

i=1 αi = 0
}

.

As desired.
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ii. NΛn(x̄) = {(β0, . . . , β0) : β0 ∈ R}+ {(β1, . . . , βn) : βi ≤ 0 ∀i ∈ I(x̄) and 0 otherwise}.

Since Λn is closed and convex, then its normal and tangent cones are closed and convex.

Thus NΛn(x̄) =
(
TΛn(x̄)

)◦
.

Define S = {(β0, . . . , β0) : β0 ∈ R}+ {(β1, . . . , βn) : βi ≤ 0 ∀i ∈ I(x̄) and 0 otherwise}.

Inclusion 1: NΛn(x̄) ⊂ S

Case 1 : I(x̄) = ∅
Let ζ ∈ NΛn(x̄). Since I(x̄) = ∅ then βi = 0 for all i, and thus: S = {(β0, . . . , β0) : β0 ∈ R}.

Prove by contradiction: Assume ζ /∈ S.

Therefore, there exists J =
{
j ∈ {1, . . . , n} : ζj 6= ζi for all i /∈ J

}
6= ∅. This means there is

at least one index j for which the component ζj is unique among all other ζi for all i /∈ J .

This implies that for all i /∈ J , the components ζi = z are identical, and that for all j ∈ J ,

the components ζj 6= z.

Since ζ ∈ NΛn(x̄) then 〈ζ, α〉 ≤ 0 for all α ∈ TΛn(x̄). Evaluate the inner product:

n∑
i=1

ζiαi =
∑
j∈J

ζjαj+
∑
i/∈J

ζiαi =
∑
j∈J

ζjαj+z
∑
i/∈J

αi =
∑
j∈J

ζjαj+z

(
0−
∑
j∈J

αj

)
=
∑
j∈J

(ζj−z)αj ≤ 0

Choose a particular α such that sgn(αj) = sgn(ζj − z), ∀j ∈ J and that at least one αj 6= 0.

This gives 〈ζ, α〉 =
∑

j∈J(ζj − z)αj > 0. (sgn(·) denotes the sign)

Contradiction.
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Case 2 : I(x̄) 6= ∅
For ease of notation let I = I(x̄) and J = I(x̄)C.

Let ζ ∈ NΛn(x̄). Since I 6= ∅ then for any s ∈ S its component: si =

{
β0 ∀i ∈ J
β0 + βi ∀i ∈ I

Prove by contradiction: Assume ζ /∈ S.

Therefore, there exists J0 ⊂ J : ζj0 6= β0, ∀j0 ∈ J0 6= ∅.
Likewise, there exists I0 ⊂ I : ζi0 6= β0 + βi, ∀i0 ∈ I0 6= ∅.

This simply means that:


ζi = β0 ∀i ∈ J − J0

ζi = β0 + βi ∀i ∈ I − I0

ζi 6= β0 ∀i ∈ J0

ζi 6= β0 + βi ∀i ∈ I0

Since ζ ∈ NΛn(x̄) then 〈ζ, α〉 ≤ 0 for all α ∈ TΛn(x̄). Evaluate the inner product:

n∑
i=1

ζiαi =
∑
i0∈I0

ζi0αi0 +
∑
j0∈J0

ζj0αj0 +
∑

i∈I−I0

ζiαi +
∑

j∈J−J0

ζjαj

=
∑
i0∈I0

ζi0αi0 +
∑
j0∈J0

ζj0αj0 +
∑

i∈I−I0

βiαi + β0

( ∑
i∈I−I0

αi +
∑

j∈J−J0

αj

)
=
∑
i0∈I0

ζi0αi0 +
∑
j0∈J0

ζj0αj0 +
∑

i∈I−I0

βiαi + β0

(
0−

∑
i∈I0

αi0 −
∑
j∈J0

αj0

)
=
∑
i0∈I0

(ζi0 − β0)αi0 +
∑
j0∈J0

(ζj0 − β0)αj0 +
∑

i∈I−I0

βiαi ≤ 0

Before choosing an instance of α realize that (ζi0−β0), (ζj0−β0), αj0 ∈ R and that αi0 , αi ≥ 0.

(Refer to sums to identify which indices belong to which set)

Choose a particular α such that αi = 0, ∀i ∈ I, and that sgn(αj0) = sgn(ζj0 − z), ∀j0 ∈ J0

and that at least one αj0 6= 0. This gives 〈ζ, α〉 =
∑

j0∈J0(ζj − z)αj0 > 0.

Contradiction.

Inclusion 2: S ⊂ NΛn(x̄)

Let s ∈ S be arbitrary. As such s = (β0 + β1, . . . , β0 + βn). For all α ∈ TΛn(x̄), obtain:

〈s, α〉 =
n∑

i=1

(β0 + βi)αi = β0

n∑
i=1

αi +
∑
i∈I(x̄)

βiαi +
∑
i/∈I(x̄)

βiαi =
∑
i∈I(x̄)

βiαi ≤ 0,

since βi ≤ 0 and αi ≥ 0 for all i ∈ I(x̄) and βi = 0 for all i /∈ I(x̄) and
∑n

i=1 αi = 0.

Observe that 〈s, a〉 ≤ 0 for all α ∈ TΛn(x̄) and conclude that s ∈ NΛn(x̄), as desired.
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Part (d): Now let f : Rn −→ R be convex and differentiable. Prove that x̄ ∈ Λn is a global

minimum of f over Λn iff there is a constant c̄ such that{
fxi

(x̄) = c̄ ∀i /∈ I(x̄)

fxi
(x̄) ≥ c̄ ∀i ∈ I(x̄)

Direction 1 (=⇒): Assume x̄ ∈ Λn is a global minimum of f over Λn.

Since f is convex and differentiable, and that Λn is closed and convex, then:

Having 0 ∈ ∇f(x̄) +NΛn(x̄), then there exists a vector s ∈ NΛn(x̄) such that ∇f(x̄) = −s.

fxi
(x̄) = −si =

{
−β0 ∀i /∈ I(x̄)

−β0 − βi ∀i ∈ I(x̄)

It is equivalent to state the existence of the constant c̄ = −β0.

Knowing that βi ≤ 0 for all i ∈ I(x̄) then −β0 − βi = c̄− βi ≥ c̄.

The desired result is thus obtained.

Direction 2 (⇐=): There exists a constant c̄ such that fxi
(x̄) is given as above.

The function f is convex and differentiable over R, and x̄ ∈ Λn.

Evaluate the inner product
〈
x− x̄,∇f(x̄)

〉
, ∀x ∈ Λn.

Realize that fxi
= c̄ or fxi

≥ c̄, therefore fxi
≥ c̄.

Thus,
〈
x− x̄,∇f(x̄)

〉
=
∑n

i=1(xi − x̄i)fxi
(x̄) ≥ x̄

∑n
i=1(xi − x̄i) = c̄(1− 1) = 0, ∀x ∈ Λn.

Conclude that x̄ is a local minimum over Λn since
〈
x− x̄,∇f(x̄)

〉
≥ 0, ∀x ∈ Λn.

Since Λn is closed and also convex, then obtain the desired result.
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Part (e): Minimize f(x, y, z) = x2 + 2y2 + z2 and g(x, y, z) = x+ 2y + z over Λ3.

Here f and g are both convex and clearly differentiable.

The Hessian ∇2f = diag(2, 4, 2) is positive-definite since all eigenvalues are strictly posi-

tive, thus f is strictly convex. The function g is convex because it is linear.

Obtain from previous results that Λ3 = {(x, y, z) ∈ R3 : x+ y + z = 1 and x, y, z ≥ 0}.
Also proven earlier was that Λ3 is closed and convex.

Let (x̄, ȳ, z̄) be the global minimum of f over Λ3 and (x∗, y∗, z∗) be that of g.

Compute the gradients ∇f = (2x, 4y, 2z) and ∇g = (1, 2, 1).

Minimize f :

Assume that the optimal point is not at the boundaries, thus I(x̄, ȳ, z̄) = ∅.
From Part (d) obtain that ∇f(x̄, ȳ, z̄) = (c̄, c̄, c̄) = (2x̄, 4ȳ, 2z̄).

The point (x̄, ȳ, z̄) = 1
4
(2c̄, c̄, 2c̄). And since x̄ ∈ Λ3, then: x̄+ ȳ + z̄ = 5

4
c̄ = 1⇐⇒ c̄ = 4

5
.

Check the boundaries; at the vertices f(1, 0, 0) = f(0, 0, 1) = 1 and f(0, 1, 0) = 2.

Edge 1: f(λ, 0, 1− λ) = 2λ2 − 2λ+ 1. Set f ′(λ) = 0 =⇒ λ = 1
2

=⇒ f = 1
2
.

Edge 2: f(0, λ, 1− λ) = 3λ2 − 2λ+ 1. Set f ′(λ) = 0 =⇒ λ = 1
3

=⇒ f = 2
3
.

Edge 3: f(λ, 1− λ, 0) = 3λ2 − 4λ+ 2. Set f ′(λ) = 0 =⇒ λ = 2
3

=⇒ f = 2
3
.

Here λ ∈ ]0, 1[. These are to be compared against the assumed optimal point.

The optimal point is thus (x̄, ȳ, z̄) = (2
5
, 1

5
, 2

5
) and the optimum is f ∗ = 2

5
.

Minimize g:

Since g is linear then its minimal point (x∗, y∗, z∗) ∈ bdry(Λ3). This is further demonstrated

by the fact that ∇g(x∗, y∗, z∗) = (c̄, c̄, c̄) = (1, 2, 1) is a contradiction.

Check the boundaries; at the vertices g(1, 0, 0) = g(0, 0, 1) = 1 and g(0, 1, 0) = 2.

Edge 1: g(λ, 0, 1− λ) = λ+ 1− λ = 1.

Edge 2: g(0, λ, 1− λ) = λ+ 1 ≥ 1.

Edge 3: g(λ, 1− λ, 0) = 2− λ ≥ 1.

Here λ ∈ ]0, 1[.

Conclude that (x∗, y∗, z∗) = (λ, 0, 1 − λ) for all λ ∈ [0, 1] are the global minimal points

and that g∗ = 1 is the global minimum.
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