Solution to "Subdifferential of Distance Function"

Let $C \subset \mathbb{R}^n$ be a nonempty, closed and convex set. We denote by $d_C(\cdot)$ the distance function associated to C. Find the subdifferential $\partial d_C(x)$ for all $x \in C$.

Proof:

Let x_0 be a fixed point in C. The distance function $d_C(x) = \inf_{c \in C} ||x - c||$ over a convex set C is convex. Moreover, it is clearly proper and lower semi-continuous.

With these properties verified, assert the following with $d_C(x_0) = 0$

$$\partial d_C(x_0) = \left\{ \zeta \in \mathbb{R}^n : d_C(x) \ge \langle \zeta, x - x_0 \rangle, \ \forall x \in \mathbb{R}^n \right\}$$

Lemma 1: $\partial d_C(x_0) \subset N_C(x_0)$ Let $\zeta \in \partial d_C(x_0)$, then obtain $d_C(x) \geq \langle \zeta, x - x_0 \rangle$ for all $x \in \mathbb{R}^n$. Then for all $x \in C$, obtain $d_C(x) = 0$, and thus that $\langle \zeta, x - x_0 \rangle \leq 0$. This gives $\zeta \in N_C(x_0)$. Therefore, $\partial d_C(x_0) \subset N_C(x_0)$.

Lemma 2: $\partial d_C(x_0) \subset \overline{B}$ Let $\zeta \in \partial d_C(x_0)$, then obtain $d_C(x) \ge \langle \zeta, x - x_0 \rangle$ for all $x \in \mathbb{R}^n$.

The function $d_C(x)$ is 1-Lipschitz, as such: $|d_C(x_1) - d_C(x_2)| \le 1 \cdot ||x_1 - x_2||$ for all $x_1, x_2 \in \mathbb{R}^n$. Choose $x_1 = x \in \mathbb{R}^n$ and $x_2 = x_0 \in C$ to obtain $||x - x_0|| \ge d_C(x)$ for all $x_1, x_2 \in \mathbb{R}^n$.

Combine this with the previous result to obtain $||x - x_0|| \ge \langle \zeta, x - x_0 \rangle$ for all $x \in \mathbb{R}^n$. Now choose $x = \zeta + x_0$ to obtain $||\zeta|| \ge \langle \zeta, \zeta \rangle$ and thus $||\zeta|| \le 1$.

As such $\zeta \in \overline{B}$, giving $\partial d_C(x_0) \subset \overline{B}$.

Lemma 3: $\overline{B} \cap N_C(x_0) \subset \partial d_C(x_0)$ Prove by contradiction: Let $\zeta \in N_C(x_0) \cap \overline{B}$.

Assume $\zeta \notin \partial d_C(x_0)$, then $\exists y \in \mathbb{R}^n : \langle \zeta, y - x_0 \rangle > d_C(y) = ||y - \bar{c}||$, where $\bar{c} = \operatorname{proj}_C(y)$. Since $\zeta \in N_C(x_0)$ then $\langle \zeta, x - x_0 \rangle \leq 0$ for all $x \in C$. In particular, $\bar{c} \in C$, thus $\langle \zeta, x_0 - \bar{c} \rangle \geq 0$.

Add the inequalities: $0 + ||y - \bar{c}|| < \langle \zeta, x_0 - \bar{c} \rangle + \langle \zeta, y - x_0 \rangle = \langle \zeta, y - \bar{c} \rangle \le ||\zeta|| \cdot ||y - \bar{c}||$. Since $\zeta \in \bar{B}$, then $||\zeta|| \le 1$ and thus: $||y - \bar{c}|| < \langle \zeta, y - \bar{c} \rangle \le ||y - \bar{c}||$. Contradiction.

Conclusion:

Conjunct the proven Lemmas to obtain $\partial d_C(x_0) = \overline{B} \cap N_C(x_0)$.