Solution to "Computing Subdifferentials"

Calculate the subdifferential of the following functions:

Part (a): $f(x)=\max \{1,|x-1|\}$ on \mathbb{R}.
Equivalently, express $f(x)=\max \{1-x, 1, x-1\}$ in piece-wise form:

$$
f(x)= \begin{cases}1-x & \text { for } x<0 \\ 1 & \text { for } 0 \leq x<2 \\ x-1 & \text { for } x \geq 2\end{cases}
$$

The functions $f_{1}(x)=1-x$ and $f_{2}(x)=1$ and $f_{3}(x)=x-1$ all are proper, lower semicontinuous, and convex. Thus, each of the three is also differentiable across its domain.

It is evident that $I(0)=\{1,2\}$ and $I(2)=\{2,3\}$.

Therefore, $\partial f(0)=\operatorname{conv}\left(\partial f_{1}(0) \cup \partial f_{2}(0)\right)=\operatorname{conv}(\{-1,0\})=[-1,0]$.
Similarly, $\partial f(2)=\operatorname{conv}\left(\partial f_{2}(2) \cup \partial f_{3}(2)\right)=\operatorname{conv}(\{0,1\})=[0,1]$.
Finally, the subdifferential of f is:

$$
\partial f(x)= \begin{cases}\{-1\} & \text { for } x<0 \\ {[-1,0]} & \text { for } x=0 \\ \{0\} & \text { for } 0<x<2 \\ {[0,1]} & \text { for } x=2 \\ \{1\} & \text { for } x>2\end{cases}
$$

Part (b): $f(x)=1-\sqrt{1-x^{2}}$ if $x \in[-1,1]$ and ∞ otherwise.

The function f is plotted below for $x \in \operatorname{dom}(f)=[-1,1]$.

It is evident that $N_{\text {epi }(f)}(-1,1)=\{(\zeta, 0): \zeta \leq 0\}$ and $N_{\text {epi }(f)}(1,1)=\{(\zeta, 0): \zeta \geq 0\}$.
Since $\nexists(\zeta,-1) \in N_{\text {epi }(f)}(-1,1) \cup N_{\text {epi }(f)}(1,1)$, then predict $\partial f(-1)=\emptyset$ and $\partial f(1)=\emptyset$.

Proof:

At the point $(1,1)$: Let $\zeta \in \partial f(1)$.
Then for all $x \in \operatorname{dom}(f)=[-1,1]$ obtain $f(x) \geq f\left(x_{0}\right)+\left\langle\zeta, x-x_{0}\right\rangle \Longrightarrow \zeta(1-x) \geq \sqrt{1-x^{2}}$. Thus, $\zeta \geq \sqrt{1-x^{2}} /(1-x)$ for $x \in[-1,1[$.

Let $g(x)=\sqrt{1-x^{2}} /(1-x)$ for $x \in[-1,1[$.
Here, g is a strictly increasing function since $g^{\prime}(x)=1 /\left[(1-x) \sqrt{1-x^{2}}\right]>0$.
Therefore, the greatest lower bound of ζ for all $x \in \operatorname{dom}(f)$ is $\lim _{x \rightarrow 1^{-}} g(x)=\infty$.
Since $\zeta \in \mathbb{R}$, then $\nexists \zeta$ for which the inequality is met for all $x \in[-1,1]$.
As such, $\partial f(1)=\emptyset$, and by symmetry $\partial f(-1)=\emptyset$.
The subgradients of f are defined on its effective domain.
Here, f is differentiable on $]-1,1[$ and thus:

$$
\partial f(x)= \begin{cases}\left\{\frac{x}{\sqrt{1-x^{2}}}\right\} & \text { for }-1<x<1 \\ \emptyset & \text { for } x \in\{-1,1\}\end{cases}
$$

Part (c): $f(x)= \begin{cases}0 & x \in[-1,1] \\ |x|-1 & x \in[-2,-1[\cup] 1,2] \\ \infty & x \in]-\infty,-2[\cup] 2, \infty[\end{cases}$
The function f is plotted below for $x \in \operatorname{dom}(f)=[-2,2]$.

On its effective domain, f can be rewritten as: $f(x)=\max \{-x-1,0, x-1\}$.

The functions $f_{1}(x)=-x-1$ and $f_{2}(x)=0$ and $f_{3}(x)=x-1$ all are proper, lower semi-continuous, convex, and each is also differentiable across its domain.

It is evident that $I(-1)=\{1,2\}$ and $I(1)=\{2,3\}$.
Therefore, $\partial f(-1)=\operatorname{conv}\left(\partial f_{1}(-1) \cup \partial f_{2}(-1)\right)=\operatorname{conv}(\{-1,0\})=[-1,0]$.
Similarly, $\partial f(1)=\operatorname{conv}\left(\partial f_{2}(1) \cup \partial f_{3}(1)\right)=\operatorname{conv}(\{0,1\})=[0,1]$.
At the point $(2,1): f(x) \geq f\left(x_{0}\right)+\left\langle\zeta, x-x_{0}\right\rangle=1+\zeta(x-2)$
Restrict the study on the $\operatorname{dom}(f)$ since the inequality requires the function to be proper.

Case 1: For $-1 \leq x \leq 1$: then $f(x)=0$ and $-3 \leq x-2 \leq-1$
Since $1 / 3 \leq-1 /(x-2) \leq 1$ then $0 \geq 1+\zeta(x-2) \Longrightarrow \zeta \geq-1 /(x-2) \Longrightarrow \zeta \geq 1$.

Case 2: For $1<x<2$: then $f(x)=x-1$ and $-1 \leq x-2<0$
Since $x-1 \geq 1+\zeta(x-2) \Longrightarrow x-2 \geq \zeta(x-2) \Longrightarrow \zeta \geq 1$.
Case 3: For $-2 \leq x<-1$: then $f(x)=1-x$ and $-4 \leq x-2 \leq-3$
Since $1-x \geq 1+\zeta(x-2) \Longrightarrow \zeta \geq-1-2 /(x-2) \Longrightarrow \zeta \geq-1 / 3$.

Since the inequality should hold $\forall x \in \operatorname{dom}(f)$, then select the restriction $\zeta \geq 1$.

Conclude $\partial f(2)=[1, \infty[$ and by symmetry, $\partial f(-2)=]-\infty,-1]$.

Finally, the subdifferential of f is:

$$
\partial f(x)= \begin{cases}]-\infty,-1] & \text { for } x=-2 \\ \{-1\} & \text { for }-2<x<-1 \\ {[-1,0]} & \text { for } x=-1 \\ \{0\} & \text { for }-1<x<1 \\ {[0,1]} & \text { for } x=1 \\ \{1\} & \text { for } 1<x<2 \\ {[1, \infty[} & \text { for } x=2\end{cases}
$$

