Solution to "Convexity \& Optimality"

Let $S \subset \mathbb{R}^{2}$ be the set defined by

$$
S:=\{(x, y): x \geq 0, y \geq 0,-x+y \leq 2 \text { and } 2 x+3 y \leq 11\} .
$$

We define on the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y):=x^{2}+y^{2}-8 x-20 y+89 .
$$

Part (a): Prove that S and f are convex.
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in S$ and let $X=\lambda x_{1}+(1-\lambda) x_{2}$ and $Y=\lambda y_{1}+(1-\lambda) y_{2}$ for all $\lambda \in[0,1]$. It is clear, using convex combinations, that:

$$
\begin{aligned}
x_{1}, x_{2}, y_{1}, y_{2} \geq 0 & \Longrightarrow X, Y \geq 0 \\
-x_{1}+y_{1} \leq 2 \text { and }-x_{2}+y_{2} \leq 2 & \Longrightarrow-X+Y \leq 2 \\
2 x_{1}+3 y_{1} \leq 11 \text { and } 2 x_{2}+3 y_{2} \leq 11 & \Longrightarrow 2 X+3 Y \leq 11
\end{aligned}
$$

Therefore $(X, Y) \in S$ meaning that $\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right) \in S$, thus S is convex.

Compute the Hessian matrix of f (it is differentiable):

$$
\nabla^{2} f(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 I
$$

Its eigenvalues are $\lambda_{1}=\lambda_{2}=2>0$ and thus f is strictly convex.

Part (b): Prove that $(1,3)$ is an optimal solution for minimizing f over S. It is sufficient to prove that:

$$
\left\langle z-z^{*}, \nabla f\left(z^{*}\right)\right\rangle \geq 0, \forall z \in S
$$

Where $z=(x, y), z^{*}=(1,3)$, and $\nabla f\left(z^{*}\right)=\left(2 x^{*}-8,2 y^{*}-20\right)=(-6,-14)$.
Obtain $\left\langle z-z^{*}, \nabla f\left(z^{*}\right)\right\rangle=(x-1, y-3) \cdot(-6,-14)=-6 x-14 y+48$.
Rearrange $-6 x-14 y+48=(2 x-2 y+4)+(-8 x-12 y+44)=2(x-y+2)+4(-2 x-3 y+11)$.
Since $z \in S$, then $\left\langle z-z^{*}, \nabla f\left(z^{*}\right)\right\rangle=2 \underbrace{(x-y+2)}_{\geq 0}+4 \underbrace{(-2 x-3 y+11)}_{\geq 0} \geq 0$.
Therefore $(1,3)$ minimizes f over S.
Part (c): Prove that $(1,3)$ is the only optimal solution.
Since f is proven in Part (a) to be strictly convex, and that is clearly proper, then any global minimum is the only global minimum.

