Solution to "Quadratic Programming"

We consider the quadratic programming problem:

$$
(P) \begin{cases}\min & f(x)=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}+\left(x_{3}-x_{1}\right)^{2} \\ \text { s.t. } & x_{1}+2 x_{2}+3 x_{3}=10 \text { and } 3 x_{1}+2 x_{2}+x_{3}=14\end{cases}
$$

Part (a): Find a vector $b \in \mathbb{R}^{2}$, a symmetric matrix W of size 3×3 and a matrix A of size 2×3 such that

$$
f(x)=\frac{1}{2}\langle W x, x\rangle \text { and the constraint is } A x=b
$$

Propose the following vectors and matrices:

$$
W=\left[\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 4 & 2 \\
-2 & 2 & 4
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
10 \\
14
\end{array}\right]
$$

Compute the matrix products,

$$
W x=\left[\begin{array}{c}
4 x_{1}-2 x_{2}-2 x_{3} \\
-2 x_{1}+4 x_{2}+2 x_{3} \\
-2 x_{1}+2 x_{2}+4 x_{3}
\end{array}\right], \quad A x=\left[\begin{array}{c}
x_{1}+2 x_{2}+3 x_{3} \\
3 x_{1}+2 x_{2}+x_{3}
\end{array}\right] .
$$

Validate the choice of W,

$$
\begin{aligned}
\frac{1}{2}\langle W x, x\rangle & =\frac{1}{2}\left(4 x_{1}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+4 x_{2}^{2}+2 x_{2} x_{3}-2 x_{1} x_{2}+2 x_{2} x_{3}+4 x_{3}^{2}\right) \\
& =2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}-2 x_{1} x_{3} \\
& =x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}+x_{3}^{2}-2 x_{1} x_{3}+x_{1}^{2} \\
& =\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}+\left(x_{3}-x_{1}\right)^{2} \\
& =f(x) .
\end{aligned}
$$

The constraints $x_{1}+2 x_{2}+3 x_{3}=10$ and $3 x_{1}+2 x_{2}+x_{3}=14$ are clearly equivalent to $A x=b$.

Part (b): Verify that W is positive definite and that the rank of A is 2 .

Compute the eigenvalues of W,

$$
\begin{aligned}
\operatorname{det}(W-\lambda I) & =\left|\begin{array}{ccc}
4-\lambda & -2 & -2 \\
-2 & 4-\lambda & 2 \\
-2 & 2 & 4-\lambda
\end{array}\right| \\
& =(4-\lambda)^{3}-12(4-\lambda)+16 \\
& =-\lambda^{3}+12 \lambda^{2}-48 \lambda+64-48+12 \lambda+16 \\
& =-\lambda^{3}+12 \lambda^{2}-36 \lambda+32 \\
& =-\lambda^{3}+4 \lambda^{2}-4 \lambda+8 \lambda^{2}-32 \lambda+32 \\
& =-\lambda\left(\lambda^{2}-4 \lambda+4\right)+8\left(\lambda^{2}-4 \lambda+4\right) \\
& =(8-\lambda)(\lambda-2)^{2}=0
\end{aligned}
$$

The eigenvalues of W are $\lambda_{1}=\lambda_{2}=\lambda_{1,2}=2 \geq 0$ and $\lambda_{3}=8 \geq 0$.
Therefore W is positive definite.

Reduce A to row echelon form,

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-3 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & -8
\end{array}\right] \xrightarrow{R_{1} \leftarrow R_{1}+(1 / 2) R_{2}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -4 & -8
\end{array}\right]
$$

The rows of A are clearly linearly independent, and therefore $\operatorname{rank}(A)=2$.
Part (c): Diagonalize the matrix W and deduce its square root $W^{1 / 2}$.
Compute the eigenvectors of W for $\lambda_{1,2}=2$,

$$
\left(W-\lambda_{1,2} I\right) v^{(1,2)}=\left[\begin{array}{ccc}
2 & -2 & -2 \\
-2 & 2 & 2 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0
$$

Since this eigenvalue is a double-solution, set two parameters $v_{2}=s$, and $v_{3}=t$.
Obtain $2 v_{1}-2 v_{2}-2 v_{3}=0$, giving $v_{1}=s+t$.

$$
v^{(1,2)}=\left[\begin{array}{c}
s+t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Compute the eigenvector of W for $\lambda_{3}=8$,

$$
\left(W-\lambda_{3} I\right) v^{(3)}=\left[\begin{array}{ccc}
-4 & -2 & -2 \\
-2 & -4 & 2 \\
-2 & 2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0
$$

Set $v_{2}=t$ to obtain $-4 v_{1}-2 t-2 v_{3}=0$ and $-2 v_{1}-4 t+2 v_{3}=0$.
Add these two equations to obtain $-6 v_{1}-6 t=0 \Longrightarrow v_{1}=-t$.
Subtract them to obtain $6 t-6 v_{3}=0 \Longrightarrow v_{3}=t$.

$$
v^{(3)}=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

The matrix W is diagonalizable since its algebraic multiplicities $m_{\lambda_{1,2}}=2$ and $m_{\lambda_{3}}=1$ are equal to its geometric multiplicities $M_{\lambda_{1,2}}=\operatorname{dim} v^{(1,2)}=2$ and $M_{\lambda_{3}}=\operatorname{dim} v^{(3)}=1$.

It can be written as $W=V D V^{-1}$ with $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\operatorname{diag}(2,2,8)$ and
$V=\left[\begin{array}{lll}v^{(1)} & v^{(2)} & v^{(3)}\end{array}\right]$. Use $V^{-1}=(\operatorname{det} V)^{-1}\left[C_{V}\right]^{\top}$ where $c_{i j}=(-1)^{i+j} m_{i j}$ (Cofactor Method). Compute the determinant,

$$
\operatorname{det} V=\left|\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=-3
$$

Compute the cofactor matrix, and thus obtain the inverse of V,

$$
C_{V}=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
-2 & 1 & -1 \\
1 & -2 & -1
\end{array}\right] \Longrightarrow V^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & -1 & 2 \\
-1 & 1 & 1
\end{array}\right]
$$

It is now possible to compute the square root matrix of W using $W^{1 / 2}=V D^{1 / 2} V^{-1}$.
Establish $D^{1 / 2}=\operatorname{diag}(\sqrt{2}, \sqrt{2}, \sqrt{8})=\sqrt{2} \operatorname{diag}(1,1,2)$.

$$
W^{1 / 2}=\frac{\sqrt{2}}{3}\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & -1 & 2 \\
-1 & 1 & 1
\end{array}\right]=\frac{\sqrt{2}}{3}\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & 1 \\
-1 & 1 & 4
\end{array}\right]
$$

Part (d): Let \bar{x} be a particular solution of the system $A x=b$. Prove, using the transformation $y=W^{1 / 2}(x-\bar{x})$, that (P) is equivalent to the following:

$$
(Q) \begin{cases}\min & \frac{1}{2}\|y\|^{2}+\left\langle W^{1 / 2} \bar{x}, y\right\rangle \\ \text { s.t. } & A W^{-1 / 2} y=0\end{cases}
$$

Let $\bar{x}=\left[\begin{array}{lll}\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3}\end{array}\right]^{\top}$ be a particular solution such that $A \bar{x}=b$.
$y=W^{1 / 2}(x-\bar{x})=\frac{\sqrt{2}}{3}\left[\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ -1 & 1 & 4\end{array}\right]\left[\begin{array}{l}x_{1}-\bar{x}_{1} \\ x_{2}-\bar{x}_{2} \\ x_{3}-\bar{x}_{3}\end{array}\right]=\frac{\sqrt{2}}{3}\left[\begin{array}{l}4\left(x_{1}-\bar{x}_{1}\right)-\left(x_{2}-\bar{x}_{2}\right)-\left(x_{3}-\bar{x}_{3}\right) \\ -\left(x_{1}-\bar{x}_{1}\right)+4\left(x_{2}-\bar{x}_{2}\right)+x_{3}-\bar{x}_{3} \\ -\left(x_{1}-\bar{x}_{1}\right)+x_{2}-\bar{x}_{2}+4\left(x_{3}-\bar{x}_{3}\right)\end{array}\right]$
Compute the normed expression:

$$
\begin{aligned}
\frac{1}{2}\|y\|^{2} & =\frac{1}{9}\left[\left(4 x_{1}-4 \bar{x}_{1}-x_{2}+\bar{x}_{2}-x_{3}+\bar{x}_{3}\right)^{2}\right. \\
& +\left(-x_{1}+\bar{x}_{1}+4 x_{2}-4 \bar{x}_{2}+x_{3}-\bar{x}_{3}\right)^{2} \\
& \left.+\left(-x_{1}+\bar{x}_{1}+x_{2}-\bar{x}_{2}+4 x_{3}-4 \bar{x}_{3}\right)^{2}\right] \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{1} x_{3}+2 x_{2} x_{3}+2 x_{3}^{2}-4 x_{1} \bar{x}_{1}+2 x_{2} \bar{x}_{1}+2 x_{3} \bar{x}_{1}+2 \bar{x}_{1}^{2}+2 x_{1} \bar{x}_{2} \\
& -4 x_{2} \bar{x}_{2}-2 x_{3} \bar{x}_{2}-2 \bar{x}_{1} \bar{x}_{2}+2 \bar{x}_{2}^{2}+2 x_{1} \bar{x}_{3}-2 x_{2} \bar{x}_{3}-4 x_{3} \bar{x}_{3}-2 \bar{x}_{1} \bar{x}_{3}+2 \bar{x}_{2} \bar{x}_{3}+2 \bar{x}_{3}^{2}
\end{aligned}
$$

Compute the inner product:

$$
\begin{aligned}
\left\langle W^{1 / 2} \bar{x}, y\right\rangle & =\frac{\sqrt{2}}{3}\left[\begin{array}{c}
4 \bar{x}_{1}-\bar{x}_{2}-\bar{x}_{3} \\
-\bar{x}_{1}+4 \bar{x}_{2}+\bar{x}_{3} \\
\bar{x}_{1}+\bar{x}_{2}+4 \bar{x}_{3}
\end{array}\right] \cdot \frac{\sqrt{2}}{3}\left[\begin{array}{c}
4 x_{1}-4 \bar{x}_{1}-x_{2}+\bar{x}_{2}-x_{3}+\bar{x}_{3} \\
-x_{1}+\bar{x}_{1}+4 x_{2}-4 \bar{x}_{2}+x_{3}-\bar{x}_{3} \\
-x_{1}+\bar{x}_{1}+x_{2}-\bar{x}_{2}+4 x_{3}-4 \bar{x}_{3}
\end{array}\right] \\
& =4 x_{1} \bar{x}_{1}-2 x_{2} \bar{x}_{1}-2 x_{3} \bar{x}_{1}-4 \bar{x}_{1}^{2}-2 x_{1} \bar{x}_{2} \\
& +4 x_{2} \bar{x}_{2}+2 x_{3} \bar{x}_{2}+4 \bar{x}_{1} \bar{x}_{2}-4 \bar{x}_{2}^{2}-2 x_{1} \bar{x}_{3}+2 x_{2} \bar{x}_{3}+4 x_{3} \bar{x}_{3}+4 \bar{x}_{1} \bar{x}_{3}-4 \bar{x}_{2} \bar{x}_{3}-4 \bar{x}_{3}^{2}
\end{aligned}
$$

Add their expansions:

$$
\begin{aligned}
\frac{1}{2}\|y\|^{2}+\left\langle W^{1 / 2} \bar{x}, y\right\rangle & =2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{1} x_{3}+2 x_{2} x_{3}+2 x_{3}^{2} \\
& -2 \bar{x}_{1}^{2}+2 \bar{x}_{1} \bar{x}_{2}-2 \bar{x}_{2}^{2}+2 \bar{x}_{1} \bar{x}_{3}-2 \bar{x}_{2} \bar{x}_{3}-2 \bar{x}_{3}^{2} \\
& =\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}+\left(x_{3}-x_{1}\right)^{2} \\
& -\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}-\left(\bar{x}_{2}+\bar{x}_{3}\right)^{2}-\left(\bar{x}_{3}-\bar{x}_{1}\right)^{2} \\
& =f(x)-f(\bar{x})
\end{aligned}
$$

The constraint $A W^{-1 / 2} y=A W^{-1 / 2} W^{1 / 2}(x-\bar{x})=A x-A \bar{x}=0 \Longleftrightarrow A x=A \bar{x} \Longleftrightarrow A x=b$. Here $f(\bar{x})$ is a constant (\bar{x} is a particular value), thus $\arg \min _{x}[f(x)-f(\bar{x})]=\arg \min _{x} f(x)$.

The constraints and minimization in (P) and (Q) are equivalent, thus $(P) \Longleftrightarrow(Q)$.

Part (e): Prove that (Q) has a unique solution that you compute.

A problem (R) of the form:

$$
(R) \begin{cases}\min & \frac{1}{2}\|y\|^{2}+\langle a, y\rangle \\ \text { s.t. } & B y=0\end{cases}
$$

where $a \in \mathbb{R}^{n}, \operatorname{dim} B=m \times n$, and $\operatorname{rank}(B)=m$, has a unique solution y^{*} of the form:

$$
y^{*}=\left[B^{\top}\left(B B^{\top}\right)^{-1} B-I_{n}\right] a
$$

In (Q), the conditions hold with $n=3$ and $m=2$ since the vector $a=W^{1 / 2} \bar{x} \in \mathbb{R}^{3}$, $B=A W^{-1 / 2}$, with $\operatorname{dim}(B)=2 \times 3$, and $\operatorname{rank}\left(A W^{-1 / 2}\right)=\operatorname{rank}(A)=2$ (since $W^{-1 / 2}$ is nonsingular). Thus, (Q) has a unique solution y^{*} as above, with the appropriate substitutions.

Compute the matrix $W^{-1 / 2}$ using the Cofactor Method as in Part (c), and deduce B :
$W^{-1 / 2}=\frac{\sqrt{2}}{12}\left[\begin{array}{ccc}5 & 1 & 1 \\ 1 & 5 & -1 \\ 1 & -1 & 5\end{array}\right] \quad B=A W^{-1 / 2}=\frac{\sqrt{2}}{12}\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}5 & 1 & 1 \\ 1 & 5 & -1 \\ 1 & -1 & 5\end{array}\right]=\frac{\sqrt{2}}{6}\left[\begin{array}{lll}5 & 4 & 7 \\ 9 & 6 & 3\end{array}\right]$
Obtain a particular solution $\bar{x}=\left[\begin{array}{lll}2 & 4 & 0\end{array}\right]^{\top}$ by solving $A x=b$ with $x_{3}=0$.
Compute the vector a,

$$
a=W^{1 / 2} \bar{x}=\frac{\sqrt{2}}{3}\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & 1 \\
-1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]=\frac{\sqrt{2}}{3}\left[\begin{array}{c}
4 \\
14 \\
2
\end{array}\right]
$$

Compute the product $B B^{\top}$ and its inverse,

$$
B B^{\top}=\left(\frac{\sqrt{2}}{6}\right)^{2}\left[\begin{array}{lll}
5 & 4 & 7 \\
9 & 6 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & 9 \\
4 & 6 \\
7 & 3
\end{array}\right]=\left[\begin{array}{ll}
5 & 5 \\
5 & 7
\end{array}\right] \Longrightarrow\left(B B^{\top}\right)^{-1}=\frac{1}{10}\left[\begin{array}{cc}
7 & -5 \\
-5 & 5
\end{array}\right]
$$

Compute the expression of matrices in the explicit solution of y^{*},

$$
B^{\top}\left(B B^{\top}\right)^{-1} B-I_{3}=\frac{1}{10}\left(\frac{\sqrt{2}}{6}\right)^{2}\left[\begin{array}{ll}
5 & 9 \\
4 & 6 \\
7 & 3
\end{array}\right]\left[\begin{array}{cc}
7 & -5 \\
-5 & 5
\end{array}\right]\left[\begin{array}{ccc}
5 & 4 & 7 \\
9 & 6 & 3
\end{array}\right]-I_{3}=\frac{1}{90}\left[\begin{array}{ccc}
-25 & 40 & 5 \\
40 & -64 & 8 \\
-5 & 8 & -1
\end{array}\right]
$$

Obtain the solution y^{*} (with which the minimum value in (Q) could easily be obtained),

$$
y^{*}=\frac{\sqrt{2}}{3 \times 90}\left[\begin{array}{ccc}
-25 & 40 & 5 \\
40 & -64 & 8 \\
-5 & 8 & -1
\end{array}\right]\left[\begin{array}{c}
4 \\
12 \\
2
\end{array}\right]=\frac{\sqrt{2}}{3}\left[\begin{array}{c}
5 \\
-8 \\
1
\end{array}\right] .
$$

Part (f): Deduce that (P) has a unique solution that you compute.
Since $y=W^{1 / 2}(x-\bar{x})$ then $x^{*}=\bar{x}+W^{-1 / 2} y^{*}$.

$$
x^{*}=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]+\frac{\sqrt{2} \times \sqrt{2}}{12 \times 3}\left[\begin{array}{ccc}
5 & 1 & 1 \\
1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right]\left[\begin{array}{c}
5 \\
-8 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]
$$

Finally, the value for which (P) is optimal is,

$$
x^{*}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

And with $x_{1}^{*}=3, x_{2}^{*}=2, x_{3}^{*}=1$, the minimum $f\left(x^{*}\right)$ is,

$$
\begin{aligned}
f\left(x^{*}\right) & =(3-2)^{2}+(2+1)^{2}+(1-3)^{2} \\
& =1+9+4 \\
& =14
\end{aligned}
$$

