Solution to "Sequential Compactness"

Let (E, d) be a metric space and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in E that converges to $a \in E$. Prove that the set $\{x_n : n \in \mathbb{N}\} \cup \{a\}$ is compact.

Proof:

Let $a = x_{\infty}$ and $S = \{x_n : n \in \mathbb{N}\} \cup \{x_{\infty}\}.$

Case 1: (x_n) has finitely many values.

S is finite $\Longrightarrow S$ is compact

Case 2: (x_n) has infinitely many values. Let $(y_k)_{k \in \mathbb{N}} \in S$ be an arbitrary sequence.

 (y_k) is not necessarily a subsequence of (x_n) , does not necessarily contain all the terms of (x_n) , and thus can be **any** reordering of **some** terms of (x_n) .

Construct a subsequence $(y_{k_i})_{i \in \mathbb{N}}$ of (y_k) inductively using the following algorithm:

$$\begin{aligned} \text{Step 0:} \begin{cases} N_0 &= \left\{ n \in \mathbb{N} : x_n \in (y_k) \right\} \\ n_0 &= \min\{N_0\} \\ y_{k_0} &= x_{n_0} \end{cases} \\ \text{Step 1:} \begin{cases} N_1 &= \left\{ n \in \mathbb{N} : x_n \in (y_k), n > n_0 \right\} = N_0 \cap \left\{ n \in \mathbb{N} : n > n_0 \right\} \\ n_1 &= \min\{N_1\} \\ y_{k_1} &= x_{n_1} \end{cases} \\ \text{Step 1:} \begin{cases} N_i &= \left\{ n \in \mathbb{N} : x_n \in (y_k), n > n_{i-1} \right\} = N_{i-1} \cap \left\{ n \in \mathbb{N} : n > n_{i-1} \right\} \\ n_i &= \min\{N_i\} \\ y_{k_i} &= x_{n_i} \end{cases} \\ \\ \text{Example: If } (y_k) &= (x_9, x_2, x_0, x_5, x_1, x_7, x_3, \ldots) \text{ then } (y_{k_i}) = (x_0, x_1, x_3, \ldots). \end{aligned}$$

The resulting subsequence (y_{k_i}) of (y_k) is also a subsequence of (x_n) . Since $x_n \to x_\infty$ then $y_{k_i} \to x_\infty$. Therefore $\forall y_k \in S, \exists y_{k_i} \to x_\infty \in S$.

Therefore S is compact.