Solution to "Metric Topology"

Let (\mathbb{R}, d) be the metric space where d is the usual metric, with $A \subset \mathbb{R}$ such that:

$$
A=\left\{(-1)^{n}+\frac{1}{n}, n \in \mathbb{N}^{*}\right\}
$$

The below plot places the first 1000 elements of A on the real number line.

Interior Points

Since $\forall n \in \mathbb{N}^{*},\left((-1)^{n}+1 / n\right) \in \mathbb{Q}$, then $A \subset \mathbb{Q}$.
Since $\operatorname{Int}(A) \subset \operatorname{Int}(\mathbb{Q})=\varnothing$, therefore:

$$
\operatorname{Int}(A)=\varnothing
$$

Isolated Points

For all $n \in \mathbb{N}^{*}$, let:

$$
N=\left((-1)^{n}+\frac{1}{n+1},(-1)^{n}+\frac{1}{n-1}\right)
$$

Since:

$$
\forall a_{n} \in A, N \cap A=\left\{a_{n}\right\}
$$

Therefore:

$$
\operatorname{Iso}(A)=A
$$

Accumulation Points

Since $A=\operatorname{Iso}(A)$ then $\operatorname{Acc}(A) \cap A=\varnothing$.

Since $\forall a_{n} \in A:-1 \leq a_{n} \leq 1.5$ then: $\forall x \in(-\infty,-1) \cup(1.5, \infty)$

$$
\exists \rho>0: B(x, \rho) \cap A=\varnothing \Longrightarrow x \notin \operatorname{Acc}(A)
$$

The sequence $\left(a_{n}\right)$ can be split into two cases: $n=2 k$ and $n=2 k-1$

$$
a_{n}=\left\{\begin{array}{l}
a_{2 k}=1+\frac{1}{2 k} \\
a_{2 k-1}=-1+\frac{1}{2 k-1}
\end{array} \quad \forall k \in \mathbb{N}^{*}\right.
$$

For each sub-sequence, define the open interval between two consecutive terms:

$$
U=\left(a_{k+1}, a_{k}\right)=\left\{\begin{array}{l}
U_{2 k}=\left(1+\frac{1}{2 k+2}, 1+\frac{1}{2 k}\right) \\
U_{2 k-1}=\left(-1+\frac{1}{2 k+1},-1+\frac{1}{2 k-1}\right)
\end{array}\right.
$$

All of these intervals are, by definition, disjoint with A and are open, therefore: $\forall u \in \bigcup_{k=1}^{\infty} U$

$$
\exists \rho>0: B(u, \rho) \cap A=\varnothing \Longrightarrow u \notin \operatorname{Acc}(A)
$$

The only remaining points to test are $\{-1,1\}$.
For $k \rightarrow \infty: a_{2 k} \rightarrow 1$ and $a_{2 k-1} \rightarrow-1$, therefore:

$$
\begin{gathered}
\forall \rho>0:(1-\rho, 1+\rho) \cap A-\{1\} \neq \varnothing \\
\forall \rho>0:(-1-\rho,-1+\rho) \cap A-\{-1\} \neq \varnothing
\end{gathered}
$$

Therefore:

$$
\operatorname{Acc}(A)=\{-1,1\}
$$

Closure Points

Since $\operatorname{Cl}(A)=\operatorname{Acc}(A) \cup \operatorname{Iso}(A)$, therefore:

$$
\mathrm{Cl}(A)=A \cup\{-1,1\}
$$

