Solution to "Conjugate Functions and Subdifferentials"

Let $f: \mathbb{R} \longrightarrow \mathbb{R} \cup \{\infty\}$ be a proper, closed and convex function such that

$$\partial f(x) = \begin{cases} \frac{1}{2}(x-1) & x < 0, \\ \left[-\frac{1}{2}, \frac{1}{2} \right] & x = 0, \\ \frac{1}{2}(x+1) & x > 0. \end{cases}$$

Find f, ∂f^* and f^* .

Part 1: f

From the properties of f, deduce that f is differentiable at $x \neq 0$. Compute the antiderivatives of $\partial f(x) = \{f'(x)\}$ for all $x \neq 0$.

For x < 0: $f(x) = \frac{1}{4}(x^2 - 2x) + c_0$, and for x > 0: $f(x) = \frac{1}{4}(x^2 + 2x) + c_1$. Here c_0 and c_1 are arbitrary constants not necessarily equal, as f is not necessarily continuous at 0.

Lemma: $c_0 = c_1 = c$ and f is continuous at x = 0. *Prove by contradiction*: Assume $c_0 \neq c_1$ and thus $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$. Imply from its piecewise definition that f is discontinuous and undefined at 0. Thus $0 \notin \text{dom}(f)$. However, $\partial f(x)$ is only defined for all $x \in \text{dom}(f)$. Since $\partial f(0)$ exists, then $0 \in \text{dom}(f)$.

Contradiction.

Conclude that $c_0 = c_1 = c$. And thus:

$$f(x) = \begin{cases} \frac{1}{4}(x^2 - 2x) + c & x < 0, \\ c & x = 0, \\ \frac{1}{4}(x^2 + 2x) + c & x > 0. \end{cases}$$

Equivalently, $f(x) = \frac{1}{4} (x^2 + 2|x|) + c$, for all $c \in \mathbb{R}$.

Part 2: ∂f^* Since f is proper, closed, and convex, therefore: $y \in \partial f(x) \iff x \in \partial f^*(y)$.

Case 1: x < 0Here $y = \frac{1}{2}(x-1) < -\frac{1}{2} \iff x = 2y + 1 < 0.$

Case 2: x > 0Here $y = \frac{1}{2}(x+1) > \frac{1}{2} \iff x = 2y - 1 > 0.$

Case 3:: x = 0Here $y \in \left[-\frac{1}{2}, \frac{1}{2}\right] \iff x = 0.$

Conclude from the cases above that:

$$\partial f^*(y) = \begin{cases} 2y+1 & y < -\frac{1}{2}, \\ 0 & y \in \left[-\frac{1}{2}, \frac{1}{2}\right], \\ 2y-1 & y > \frac{1}{2}. \end{cases}$$

Part 3: f^*

Since f is proper, closed and convex, obtain that: $f^*(y) = \langle x, y \rangle - f(x) = xy - f(x)$.

Case 1: $x < 0 \iff y < -\frac{1}{2}$ Here $f(x) = \frac{1}{4}(x^2 - 2x) + c$ and as above x = 2y + 1. Replace in $f^*(y) = xy - f(x)$ to obtain: $f^*(y) = y^2 + y + \frac{1}{4} - c$.

 $\begin{array}{l} \textbf{Case 2:} \ x > 0 \Longleftrightarrow y > \frac{1}{2} \\ \text{Here } f(x) = \frac{1}{4}(x^2 + 2x) + c \text{ and as above } x = 2y - 1. \\ \text{Replace in } f^*(y) = xy - f(x) \text{ to obtain: } f^*(y) = y^2 - y + \frac{1}{4} - c. \end{array}$

Case 3: $x = 0 \iff y \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ Here f(x) = c and as above x = 0. Replace in $f^*(y) = xy - f(x)$ to obtain: $f^*(y) = -c$.

Conclude from the cases above that:

$$f^*(y) = \begin{cases} y^2 + y + \frac{1}{4} - c & y < -\frac{1}{2}, \\ -c & y \in \left[-\frac{1}{2}, \frac{1}{2} \right], \\ y^2 - y + \frac{1}{4} - c & y > \frac{1}{2}. \end{cases}$$

For the same arbitrary constant c as in Part 1.

Below is plotted the conjugate function $f^*(y)$ for the case where c = 1.

