Solution to "Conjugate Functions and Subdifferentials"

Let $f: \mathbb{R} \longrightarrow \mathbb{R} \cup\{\infty\}$ be a proper, closed and convex function such that

$$
\partial f(x)= \begin{cases}\frac{1}{2}(x-1) & x<0 \\ {\left[-\frac{1}{2}, \frac{1}{2}\right]} & x=0 \\ \frac{1}{2}(x+1) & x>0\end{cases}
$$

Find $f, \partial f^{*}$ and f^{*}.
Part 1: f
From the properties of f, deduce that f is differentiable at $x \neq 0$.
Compute the antiderivatives of $\partial f(x)=\left\{f^{\prime}(x)\right\}$ for all $x \neq 0$.
For $x<0: f(x)=\frac{1}{4}\left(x^{2}-2 x\right)+c_{0}$, and for $x>0: f(x)=\frac{1}{4}\left(x^{2}+2 x\right)+c_{1}$. Here c_{0} and c_{1} are arbitrary constants not necessarily equal, as f is not necessarily continuous at 0 .

The left-plot is the case when $c_{0}=1 \neq c_{1}=0$, and the right-plot is the case when $c_{0}=c_{1}=0$.

Lemma: $c_{0}=c_{1}=c$ and f is continuous at $x=0$.
Prove by contradiction: Assume $c_{0} \neq c_{1}$ and thus $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$. Imply from its piecewise definition that f is discontinuous and undefined at 0 . Thus $0 \notin \operatorname{dom}(f)$. However, $\partial f(x)$ is only defined for all $x \in \operatorname{dom}(f)$. Since $\partial f(0)$ exists, then $0 \in \operatorname{dom}(f)$.

Contradiction.

Conclude that $c_{0}=c_{1}=c$. And thus:

$$
f(x)= \begin{cases}\frac{1}{4}\left(x^{2}-2 x\right)+c & x<0 \\ c & x=0 \\ \frac{1}{4}\left(x^{2}+2 x\right)+c & x>0\end{cases}
$$

Equivalently, $f(x)=\frac{1}{4}\left(x^{2}+2|x|\right)+c$, for all $c \in \mathbb{R}$.

Part 2: ∂f^{*}
Since f is proper, closed, and convex, therefore: $y \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(y)$.

Case 1: $x<0$
Here $y=\frac{1}{2}(x-1)<-\frac{1}{2} \Longleftrightarrow x=2 y+1<0$.
Case 2: $x>0$
Here $y=\frac{1}{2}(x+1)>\frac{1}{2} \Longleftrightarrow x=2 y-1>0$.
Case 3:: $x=0$
Here $y \in\left[-\frac{1}{2}, \frac{1}{2}\right] \Longleftrightarrow x=0$.
Conclude from the cases above that:

$$
\partial f^{*}(y)= \begin{cases}2 y+1 & y<-\frac{1}{2} \\ 0 & y \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\ 2 y-1 & y>\frac{1}{2}\end{cases}
$$

Part 3: f^{*}
Since f is proper, closed and convex, obtain that: $f^{*}(y)=\langle x, y\rangle-f(x)=x y-f(x)$.
Case 1: $x<0 \Longleftrightarrow y<-\frac{1}{2}$
Here $f(x)=\frac{1}{4}\left(x^{2}-2 x\right)+c$ and as above $x=2 y+1$.
Replace in $f^{*}(y)=x y-f(x)$ to obtain: $f^{*}(y)=y^{2}+y+\frac{1}{4}-c$.
Case 2: $x>0 \Longleftrightarrow y>\frac{1}{2}$
Here $f(x)=\frac{1}{4}\left(x^{2}+2 x\right)+c$ and as above $x=2 y-1$.
Replace in $f^{*}(y)=x y-f(x)$ to obtain: $f^{*}(y)=y^{2}-y+\frac{1}{4}-c$.
Case 3: $x=0 \Longleftrightarrow y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Here $f(x)=c$ and as above $x=0$.
Replace in $f^{*}(y)=x y-f(x)$ to obtain: $f^{*}(y)=-c$.

Conclude from the cases above that:

$$
f^{*}(y)= \begin{cases}y^{2}+y+\frac{1}{4}-c & y<-\frac{1}{2} \\ -c & y \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\ y^{2}-y+\frac{1}{4}-c & y>\frac{1}{2}\end{cases}
$$

For the same arbitrary constant c as in Part 1.

Below is plotted the conjugate function $f^{*}(y)$ for the case where $c=1$.

