Solution to "Convexity of Minimization Problem"

For $a \in \mathbb{R}$, we consider the following minimization problem

$$(P_a) \begin{cases} \min_{(x_1, x_2) \in \mathbb{R}^2} x_1^2 + a x_2^2 + x_1 x_2 + x_1, \\ \text{s.t.} \quad x_1 + x_2 - 1 \le 0. \end{cases}$$

Part (a): Prove that (P_a) is a convex problem if and only if $a \ge \frac{1}{4}$.

The problem (P_a) is convex if and only if \mathcal{D} is convex, and the functions f_0 , f_i , and h_i are all convex over \mathcal{D} . Here $\mathcal{D} = \mathbb{R}^2$ is clearly convex, and the constraint function $f_1(x_1, x_2) = x_1 + x_2 - 1$ is affine and is thus convex over \mathbb{R}^2 .

Study the convexity of f_0 w.r.t. *a* to determine the range of *a* for which (P_a) is convex. Compute the Hessian matrix of f_0 and express its eigenvalues λ_1 and λ_2 as a function of *a*.

$$\nabla^2 f_0 = \begin{bmatrix} 2 & 1\\ 1 & 2a \end{bmatrix} \Longrightarrow \det(\nabla^2 f_0 - \lambda I) = \begin{vmatrix} 2 - \lambda & 1\\ 1 & 2a - \lambda \end{vmatrix} = \lambda^2 - (2a + 2)\lambda + 4a - 1 = 0$$

The discriminant $\Delta = (2a+2)^2 - 16a + 4 = 4(a^2 - 2a + 2) = 4[(a-1)^2 + 1] > 0$ verifies that λ_1 and λ_2 are real for any a. Use the quadratic formula to obtain $\lambda_{1,2} = \frac{1}{2}(2a+2 \mp \sqrt{\Delta})$. Thus obtain the solution:

$$\lambda_1 = a + 1 - \sqrt{(a-1)^2 + 1}$$
 and $\lambda_2 = a + 1 + \sqrt{(a-1)^2 + 1}$

The system $\{\lambda_1 \ge 0, \lambda_2 \ge 0\}$ translates to $\{a+1 \ge \sqrt{(a-1)^2+1}, a+1 \ge -\sqrt{(a-1)^2+1}\}$.

Since $a + 1 \ge \sqrt{(a-1)^2 + 1} \ge 0 \ge -\sqrt{(a-1)^2 + 1}$ the conjunction reduces the system to solving the following inequality:

$$a+1 \ge \sqrt{(a-1)^2 + 1} \iff (a+1)^2 - (a-1)^2 \ge 1 \iff (a+1+a-1)(a+1-a+1) \ge 1 \iff 4a \ge 1$$

The following equivalences are established:

$$a \ge \frac{1}{4} \iff \lambda_1, \lambda_2 \ge 0 \iff \nabla^2 f_0$$
 is positive semi-definite $\iff f_0$ is convex

Therefore, (P_a) is a convex problem if and only if $a \ge \frac{1}{4}$.

Part (b): Find the optimal solution and the optimal value of (P_a) when $a \ge \frac{1}{4}$.

Since $\exists (-1,-1) \in \operatorname{int}(\mathbb{R}^2) : f_1(-1,-1) = -1 - 1 - 1 = -3 < 0$ then Slater's condition is satisfied. Furthermore, f_0 and f_1 are clearly differentiable and (P_a) is convex with $a \geq \frac{1}{4}$.

Compute the gradients:
$$\nabla f_0(x_1, x_2) = \begin{pmatrix} 2x_1 + x_2 + 1 \\ x_1 + 2ax_2 \end{pmatrix}$$
 and $\nabla f_1(x_1, x_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

 x^* is optimal for $(P_a)_{a \geq \frac{1}{4}}$ if and only if $\exists \lambda_1^*$ that satisfies KKT:

$$(D_a)_{a \ge \frac{1}{4}} : \begin{cases} x_1^* + x_2^* - 1 \le 0\\ \lambda_1^* \ge 0\\ \lambda_1^* (x_1^* + x_2^* - 1) = 0\\ 2x_1^* + x_2^* + 1 + \lambda_1^* = 0\\ x_1^* + 2ax_2^* + \lambda_1^* = 0 \end{cases}$$

Case 1: $\lambda_1^* = 0$

The system
$$(D_a)_{a \ge \frac{1}{4}}$$
 reduces to solving:
$$\begin{cases} 2x_1^* + x_2^* + 1 = 0\\ x_1^* + 2ax_2^* = 0 \end{cases} \iff \begin{cases} x_1^* = -\frac{2a}{4a-1}\\ x_2^* = \frac{1}{4a-1} \end{cases}$$

Check (x_1^*, x_2^*) feasibility range: $x_1^* + x_2^* - 1 = \frac{2(1-3a)}{4a-1} \leq 0$ for $a \geq \frac{1}{3}$. Substitute above and simplify to obtain the optimal value $f_0(x_1^*, x_2^*) = \frac{a}{1-4a}$ for $a \geq \frac{1}{3}$.

$$\begin{aligned} \textbf{Case 2:} \ x_1^* + x_2^* - 1 \iff x_1 = 1 - x_2 \\ \text{The system } (D_a)_{a \ge \frac{1}{4}} \text{ reduces to solving: } \begin{cases} -x_2^* + 3 + \lambda^* = 0 \\ (2a - 1)x_2^* + 1 + \lambda^* = 0 \end{cases} \iff \begin{cases} x_1^* = 1 - \frac{1}{a} \\ x_2^* = \frac{1}{a} \\ \lambda^* = \frac{1 - 3a}{a} \end{cases} \end{aligned}$$

Check λ^* feasibility range: $\lambda^* = \frac{1-3a}{a} \ge 0$ for $a \in \begin{bmatrix} \frac{1}{4}, \frac{1}{3} \end{bmatrix}$. Substitute above and simplify to obtain the optimal value $f_0(x_1^*, x_2^*) = 2 - \frac{1}{a}$ for for $a \in \begin{bmatrix} \frac{1}{4}, \frac{1}{3} \end{bmatrix}$.

Conclusion:

The optimal solutions of $(P_a)_{a \geq \frac{1}{4}}$ and their optimal values are:

$$\begin{cases} x_1^* = 1 - \frac{1}{a} \text{ and } x_2^* = \frac{1}{a} \text{ and } f_0^* = 2 - \frac{1}{a} & \text{for } \frac{1}{4} \le a \le \frac{1}{3} \\ x_1^* = -\frac{2a}{4a-1} \text{ and } x_2^* = \frac{1}{4a-1} \text{ and } f_0^* = \frac{a}{1-4a} & \text{for } a \ge \frac{1}{3} \end{cases}$$

Interestingly for $a = \frac{1}{3}$ the two minimal points are a double-point (-2, 3) for which $f^* = -1$.