Solution to "Convexity of Minimization Problem"

For $a \in \mathbb{R}$, we consider the following minimization problem

$$
\left(P_{a}\right)\left\{\begin{array}{l}
\min _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}} x_{1}^{2}+a x_{2}^{2}+x_{1} x_{2}+x_{1}, \\
\text { s.t. } \quad x_{1}+x_{2}-1 \leq 0 .
\end{array}\right.
$$

Part (a): Prove that $\left(P_{a}\right)$ is a convex problem if and only if $a \geq \frac{1}{4}$.
The problem $\left(P_{a}\right)$ is convex if and only if \mathcal{D} is convex, and the functions f_{0}, f_{i}, and h_{i} are all convex over \mathcal{D}. Here $\mathcal{D}=\mathbb{R}^{2}$ is clearly convex, and the constraint function $f_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1$ is affine and is thus convex over \mathbb{R}^{2}.

Study the convexity of f_{0} w.r.t. a to determine the range of a for which $\left(P_{a}\right)$ is convex.
Compute the Hessian matrix of f_{0} and express its eigenvalues λ_{1} and λ_{2} as a function of a.

$$
\nabla^{2} f_{0}=\left[\begin{array}{cc}
2 & 1 \\
1 & 2 a
\end{array}\right] \Longrightarrow \operatorname{det}\left(\nabla^{2} f_{0}-\lambda I\right)=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2 a-\lambda
\end{array}\right|=\lambda^{2}-(2 a+2) \lambda+4 a-1=0
$$

The discriminant $\Delta=(2 a+2)^{2}-16 a+4=4\left(a^{2}-2 a+2\right)=4\left[(a-1)^{2}+1\right]>0$ verifies that λ_{1} and λ_{2} are real for any a. Use the quadratic formula to obtain $\lambda_{1,2}=\frac{1}{2}(2 a+2 \mp \sqrt{\Delta})$. Thus obtain the solution:

$$
\lambda_{1}=a+1-\sqrt{(a-1)^{2}+1} \text { and } \lambda_{2}=a+1+\sqrt{(a-1)^{2}+1}
$$

The system $\left\{\lambda_{1} \geq 0, \lambda_{2} \geq 0\right\}$ translates to $\left\{a+1 \geq \sqrt{(a-1)^{2}+1}, a+1 \geq-\sqrt{(a-1)^{2}+1}\right\}$.
Since $a+1 \geq \sqrt{(a-1)^{2}+1} \geq 0 \geq-\sqrt{(a-1)^{2}+1}$ the conjunction reduces the system to solving the following inequality:
$a+1 \geq \sqrt{(a-1)^{2}+1} \Longleftrightarrow(a+1)^{2}-(a-1)^{2} \geq 1 \Longleftrightarrow(a+1+a-1)(a+1-a+1) \geq 1 \Longleftrightarrow 4 a \geq 1$
The following equivalences are established:

$$
a \geq \frac{1}{4} \Longleftrightarrow \lambda_{1}, \lambda_{2} \geq 0 \Longleftrightarrow \nabla^{2} f_{0} \text { is positive semi-definite } \Longleftrightarrow f_{0} \text { is convex. }
$$

Therefore, $\left(P_{a}\right)$ is a convex problem if and only if $a \geq \frac{1}{4}$.

Part (b): Find the optimal solution and the optimal value of $\left(P_{a}\right)$ when $a \geq \frac{1}{4}$.
Since $\exists(-1,-1) \in \operatorname{int}\left(\mathbb{R}^{2}\right): f_{1}(-1,-1)=-1-1-1=-3<0$ then Slater's condition is satisfied. Furthermore, f_{0} and f_{1} are clearly differentiable and $\left(P_{a}\right)$ is convex with $a \geq \frac{1}{4}$.

Compute the gradients: $\nabla f_{0}\left(x_{1}, x_{2}\right)=\binom{2 x_{1}+x_{2}+1}{x_{1}+2 a x_{2}}$ and $\nabla f_{1}\left(x_{1}, x_{2}\right)=\binom{1}{1}$.
x^{*} is optimal for $\left(P_{a}\right)_{a \geq \frac{1}{4}}$ if and only if $\exists \lambda_{1}^{*}$ that satisfies KKT:

$$
\left(D_{a}\right)_{a \geq \frac{1}{4}}:\left\{\begin{array}{l}
x_{1}^{*}+x_{2}^{*}-1 \leq 0 \\
\lambda_{1}^{*} \geq 0 \\
\lambda_{1}^{*}\left(x_{1}^{*}+x_{2}^{*}-1\right)=0 \\
2 x_{1}^{*}+x_{2}^{*}+1+\lambda_{1}^{*}=0 \\
x_{1}^{*}+2 a x_{2}^{*}+\lambda_{1}^{*}=0
\end{array}\right.
$$

Case 1: $\lambda_{1}^{*}=0$
The system $\left(D_{a}\right)_{a \geq \frac{1}{4}}$ reduces to solving: $\left\{\begin{array}{l}2 x_{1}^{*}+x_{2}^{*}+1=0 \\ x_{1}^{*}+2 a x_{2}^{*}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}x_{1}^{*}=-\frac{2 a}{4 a-1} \\ x_{2}^{*}=\frac{1}{4 a-1}\end{array}\right.\right.$
Check $\left(x_{1}^{*}, x_{2}^{*}\right)$ feasibility range: $x_{1}^{*}+x_{2}^{*}-1=\frac{2(1-3 a)}{4 a-1} \leq 0$ for $a \geq \frac{1}{3}$.
Substitute above and simplify to obtain the optimal value $f_{0}\left(x_{1}^{*}, x_{2}^{*}\right)=\frac{a}{1-4 a}$ for $a \geq \frac{1}{3}$.
Case 2: $x_{1}^{*}+x_{2}^{*}-1 \Longleftrightarrow x_{1}=1-x_{2}$
The system $\left(D_{a}\right)_{a \geq \frac{1}{4}}$ reduces to solving: $\left\{\begin{array}{l}-x_{2}^{*}+3+\lambda^{*}=0 \\ (2 a-1) x_{2}^{*}+1+\lambda^{*}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}x_{1}^{*}=1-\frac{1}{a} \\ x_{2}^{*}=\frac{1}{a} \\ \lambda^{*}=\frac{1-3 a}{a}\end{array}\right.\right.$
Check λ^{*} feasibility range: $\lambda^{*}=\frac{1-3 a}{a} \geq 0$ for $a \in\left[\frac{1}{4}, \frac{1}{3}\right]$.
Substitute above and simplify to obtain the optimal value $f_{0}\left(x_{1}^{*}, x_{2}^{*}\right)=2-\frac{1}{a}$ for for $a \in\left[\frac{1}{4}, \frac{1}{3}\right]$.

Conclusion:

The optimal solutions of $\left(P_{a}\right)_{a \geq \frac{1}{4}}$ and their optimal values are:

$$
\begin{cases}x_{1}^{*}=1-\frac{1}{a} \text { and } x_{2}^{*}=\frac{1}{a} \text { and } f_{0}^{*}=2-\frac{1}{a} & \text { for } \frac{1}{4} \leq a \leq \frac{1}{3} \\ x_{1}^{*}=-\frac{2 a}{4 a-1} \text { and } x_{2}^{*}=\frac{1}{4 a-1} \text { and } f_{0}^{*}=\frac{a}{1-4 a} & \text { for } a \geq \frac{1}{3}\end{cases}
$$

Interestingly for $a=\frac{1}{3}$ the two minimal points are a double-point $(-2,3)$ for which $f^{*}=-1$.

