Solution to "Semicontinuity"

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a lower semicontinuous function, and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a lower semicontinuous and nondecreasing function. Show that the function h defined by $h(x)=g(f(x))$ is lower semicontinuous. Give an example showing that the nondecrease assumption is essential.

Proof:

It is sufficient to prove that for all $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{n}$ with $x_{n} \rightarrow x_{\infty}$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right) \geq g\left(f\left(x_{\infty}\right)\right) \tag{2.1}
\end{equation*}
$$

Let $x_{n} \rightarrow x_{\infty}$ be any sequence in \mathbb{R}^{n}.
Since f is lower semicontinuous, then $\liminf _{n \rightarrow \infty} f\left(x_{n}\right) \geq f\left(x_{\infty}\right)$, and since g is nondecreasing then:

$$
\begin{equation*}
g\left(\liminf _{n \rightarrow \infty} f\left(x_{n}\right)\right) \geq g\left(f\left(x_{\infty}\right)\right) \tag{2.2}
\end{equation*}
$$

The limit inferior of $f\left(x_{n}\right)$ is by definition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\inf _{k \geq n} f\left(x_{k}\right)\right)=\liminf _{n \rightarrow \infty} f\left(x_{n}\right) \tag{2.3}
\end{equation*}
$$

Interpret (2.3) as a sequence $\inf _{k \geq n} f\left(x_{k}\right) \rightarrow \liminf _{n \rightarrow \infty}\left(f\left(x_{n}\right)\right)$. Since g is lower semicontinuous then:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} g\left(\inf _{k \geq n} f\left(x_{k}\right)\right) \geq g\left(\liminf _{n \rightarrow \infty} f\left(x_{n}\right)\right) \tag{2.4}
\end{equation*}
$$

Since $f\left(x_{n}\right) \geq \inf _{k \geq n} f\left(x_{k}\right)$ and g is nondecreasing then $g\left(f\left(x_{n}\right)\right) \geq g\left(\inf _{k \geq n} f\left(x_{k}\right)\right)$. Thus,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right) \geq \liminf _{n \rightarrow \infty} g\left(\inf _{k \geq n} f\left(x_{k}\right)\right) \tag{2.5}
\end{equation*}
$$

Combine (2.2), (2.4), and (2.5) to obtain (2.1), as desired.

Example:

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ with:

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x>0 \\
0 & \text { otherwise }
\end{array} \text { and } g(x)=-x\right.
$$

Let $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}=(1 / n)_{n \in \mathbb{N}^{*}}>0$ with $x_{n} \rightarrow 0$.
Both f and g are lower semicontinuous since $\liminf _{n \rightarrow \infty} f\left(x_{n}\right)=\liminf _{x \rightarrow \infty} 1=1 \geq f(0)=0$ and g is continuous. However, $\liminf _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=\liminf _{n \rightarrow \infty}-1=-1>g(f(0))=0$. Thus, $h=g \circ f$ is not lower semicontiuous.

Therefore, g is necessarily nondecreasing for $g \circ f$ to be lower semicontinuous.

