Given the LTI system $\begin{cases} \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \\ \mathbf{y} = C\mathbf{x} \end{cases}$ with:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \qquad \mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Assumptions

- Output value $\mathbf{y}(t)$ is **available** for feedback control.
- State value $\mathbf{x}(t)$ is **unavailable**.

LUENBERGER OBSERVER DESIGN

The Luenberger observer of the form $\begin{cases} \dot{\hat{\mathbf{x}}} = A\hat{\mathbf{x}} + B\mathbf{u} + L(\mathbf{y} - \hat{\mathbf{y}}) \\ \hat{\mathbf{y}} = C\mathbf{x} \end{cases}$ inherits the value of the

matrices $\{A,B,C\}$ from the LTI system mentioned above.

The gain matrix $L \in \mathbb{R}^{3 \times 1}$ is designed such that A - LC has eigenvalues $\lambda \in \{-1, -2, -3\}$.

MATLAB Solution

Define the system matrices. %% MATRIX DEFINITIONS

>> $A = [0 \ 1 \ 0; \ 0 \ 1 \ 1; \ 1 \ -2 \ 1]; \ C = [0 \ 0 \ 1];$

Check if the system is fully-observable.
%% OBSERVABILITY
>> rank(obsv(A,C))
ans = 3

Since $\dim \mathbf{x} = 3$ therefore the system is **observable**.

Design the gain matrix of the Luenberger Observer using place. $(\lambda \in \{-1, -2, -3\})$

```
%% POLE PLACEMENT

>> L = place(A',C', [-1, -2, -3])'

L =

-30.0000

-23.0000

8.0000

Thus, L = \begin{bmatrix} -30 \\ -23 \\ 8 \end{bmatrix}.
```

Effectively, the desired eigenvalues are $\lambda \in \{-1, -2, -3\}$.

Linear Observer Dynamic Equations

The observer equations are,

$$\begin{cases} \dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}\mathbf{u} + \mathbf{L}(\mathbf{y} - \hat{\mathbf{y}}) \\ \hat{\mathbf{y}} = \mathbf{C}\hat{\mathbf{x}} \end{cases}$$

All matrices have been determined. Replace all values to obtain,

	(.	Γ0	1	[0]		[0]		[-30]	
	$\hat{\mathbf{x}} =$	0	1	1	$\hat{\mathbf{x}}$ +	0	$\mathbf{u} +$	-23	$(\mathbf{y} - \hat{\mathbf{y}})$
<	Í	L_1	-2	1		\lfloor_1		L 8 J	
	$\hat{\mathbf{y}} =$	[0	$[0 \ 1]$	$\hat{\mathbf{x}}$					

FEEDBACK CONTROL DESIGN

The linear feedback gain $K \in \mathbb{R}^{1 \times 3}$ will be designed such that for input $\mathbf{u} = K\mathbf{x}$ the eigenvalues of the closed-loop system are $\lambda \in \{-1, -2, -3\}$.

MATLAB Solution

Define the system matrices.

%% MATRIX DEFINITIONS >> A = [0 1 0; 0 1 1; 1 -2 1]; B = [0;0;1];

Check the system's asymptotic stability.

```
%% STABILITY
>> real(eig(A))'
ans =
0.4302 0.7849 0.7849
```

Since the eigenvalues have positive real parts, the system $\{A, B\}$ is unstable.

Check if the system is fully-controllable. %% CONTROLLABILITY >> r = rank(ctrb(A,B)) r = 3

Since dim $\mathbf{x} = 3$ therefore, the system $\{A, B\}$ is **controllable**.

Design the feedback gain matrix $K \in \mathbb{R}^{1 \times 3}$ such that $\lambda \in \{-1, -2, -3\}$.

 Thus, $K = \begin{bmatrix} -7 & -16 & -8 \end{bmatrix}$.

The controller equation is $\mathbf{u}(t) = \mathbf{K}\mathbf{x}(t)$.

$$\mathbf{u}(t) = \begin{bmatrix} -7 & -16 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = -7x_1 - 16x_2 - 8x_3$$

Finally, obtain $\mathbf{u}(t) = -7x_1 - 16x_2 - 8x_3$

SIMULINK IMPLEMENTATION

Refer to luenberger.slx for the implementation in Simulink.

The output-feedback controller has been implemented in *Simulink* as follows.

The block **System** is the LTI **Block** configured with the following parameters.

🛅 Block Parameters: System	\times							
LTI Block (mask) (link)								
The LTI System block accepts both continuous and discrete LTI models as defined in the Control System Toolbox. Transfer function, state-space, and zero-pole-gain formats are all supported in this block.								
Note: Initial states are only meaningful for state-space systems.								
Parameters								
LTI system variable								
ss([0 1 0; 0 1 1; 1 -2 1],[0;0;1],[0 0 1],0)								
Initial states (state-space only)								
[-1;1;2]	:							
Cancei Heip Appi	у							

The initial states were arbitrarily set to $\mathbf{x}(0) = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^{\top}$.

The block *Linear State Observer* is a subsystem containing the following:

This is the implementation for the dynamical system that describes the Luenberger observer developed earlier. The matrix values in this system are all listed above.

🖹 Block Parameters: Integrator 🛛 🗙					
Integrator					
Continuous-time integration of the input signal.					
Parameters					
External reset: none					
Initial condition source: internal					
Initial condition:					
[1 2 3]					
Limit output					
Wrap state					
Show saturation port					
Show state port					
Absolute tolerance:					
auto					
□ Ignore limit and reset when linearizing					
☑ Enable zero-crossing detection					
State Name: (e.g., 'position')					
"					
OK Cancel Help Apply					

Plots

This first plot is for the observer states i.e. the estimated states $\hat{\mathbf{x}} = [\hat{x}_1 \quad \hat{x}_2 \quad \hat{x}_3]^\top$.

This second plot is for the output of the LTI system $\mathbf{y} = \mathbf{C}\mathbf{x}$.

This third plot is for the feedback input $\mathbf{u}=\mathrm{K}\mathbf{\hat{x}}.$

All three plots show that the system asymptotically stabilizes while reaching its goal.