James AKI Convex Analysis: Select Works

Solution to “Normal and Tangent Cones”

In R™, we consider the set:

An:{(xl,...,xn)GR”:xiZOW and inzl}

=1

Part (a): Verify that A, is closed and convex.

Convexity
Let x € A, be an arbitrary vector.

It can be decomposed using the canonical basis into x = (x1,...,2,) = Y, ;€;.
Since x; > 0 for all ¢ and Y, 2; = 1 then z is a convex combination of unit vectors &;.

The convex hull of {é;,...,é,} is the set of all convex combinations of its elements é;,
that is, the set of all z.

Thus, A, = conv({éy,...,&,}) is convex.
Closedness
Let x; = (T14,...,%nk) € A, be an arbitrary vector sequence with (21 4)ken, - - -, (Tnk)ken
being n arbitrary sequences in R such that: klim xip =x; forall i € {1,...,n}.
—00

Since x;, € A,, then obtain:
zip > 0Vie{l,...,n} and Zx”“ =1
i=1

By the properties of real-valued limits obtain that: lim z;; > lim 0 = z; > 0 for all 1.
k—o0 k—o0

Moreover, apply the limit to the sum:

n n n
limg xikzg limxikzg r;=1lim1=1
k—o00 ’ k—oo k—o00

i=1 i=1 i=1

Realize that the vector x = klim zy = (x1,...,2,) € A, since:
—00

z; >0Vie{l,...,n} and inzl
i=1

Therefore A,, is closed.
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Part (b): Sketch Aj and find geometrically (without an analytic proof) Na,(z) and Ty, (z)
at the points x = (%, %, %), ((), %, %) and (0,0,1).

For n = 3, label (21,29, 23) = (2,9, 2) € R3.
Here A3 = {(x,y,z) ER}:z+y+z2=1andx,y,z> 0} = conv(él,éz,é?,).

Geometrically Aj is the surface bounded equilateral triangle formed by (1,0,0), (0,1,0),
and (0,0,1).
l

z
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For the interior point A = (1,1, 1), the normal cone is the orthogonal straight line passing
through A.
Nu(A) = {(t,4,1) : Vt € R}.

Consequently, the tangent cone at A is the plane containing Aj:

Thy,(A) = {(z,y,2) ;2 +y+2z=1and z,y,z € R} = aff((é1, &, &3)).

[

z
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For the edge point A = (0, 3,1), the normal cone is the plane line passing through A and

orthogonal to the edge containing A. This is the plane y — z = 0.
Np,(A) ={(z,y,2) :y—2z=0and z,y,z € R}.
Consequently, the tangent cone at A is also the plane containing As:

Thy(A) ={(z,y,2) :x+y+2z=1and z,y,z € R} = aff((&;, &, 3)).

)—_—.—-——.—.-——.-—-—_-—_
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For the vertex A = (O, 0, 1), the normal cone is the intersection of the epigraphs of the two
planes orthogonal at A to the edges containing A.

This is the space above both planes x —2+1=0and y — 2+ 1= 0.

N, (A) ={(z,y,2) ;e —2z+1>0and y —2+1 >0 and z,y, z € R}.

Consequently, the tangent cone is the polar cone, that is, the intersection of the hypographs
of the two planes passing through A and orthogonal to the edges containing A.

This is the space below both planes + —2y+2—-1=0and -2z +y+2—1=0.

Ta,(A) ={(z,y,2):x—2y+2z—1<0and —2z+y+2—1<0and z,y,z € R}.

4
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Part (c): For z € A,,, we denote by I(Z) the set of ¢ such that z; = 0. Note that I(z) can
be an empty set. Prove that:

i Th,(z) ={(ou,...,an) ER" :; > 0Vi € I(Z) and Y., o; = 0}.

Since A,, is closed and convex, then,

Th,(Z) = c{\(z —Z):z € A, and XA >0}

~

A

Let a € A be an arbitrary vector. Obtain o = (A(z1 — Z1), ..., AN(@n — Tn)).
Therefore, for all i € I(z), a; = AMx; — T;) = Az; > 0 since A\, z; > 0.

Moreover, since x, T € A,,, then evaluate the sum to obtain:
i=1 i=1 i=1
Thus A= {(ov,...,a,) ER":0; > 0Vi € I(Z) and Y." oy = 0}.

Lemma: A is closed.

Let oy, = (1 k- .-, nk) € A be an arbitrary vector sequence with (o k)kens - - -5 (Qn k) ken
being n arbitrary sequences in R such that: klim a;=o; foralli e {1,...,n}.
—00

Since oy € A then obtain:
;x> 0Vie I(z) and Za@k =0
i=1

By the properties of real-valued limits obtain: klim Qg > klim 0= a; >0foralliecl(z).
— 00 — 00

Moreover, apply the limit to the sum:
n n n
Jim 3 ass =3 Jim eww =3 a0 = Jim 0=0
1= 1= 1=

Realize that the vector o = klim ag = (o, ..., q,) € A since:
—00

a; > 0Vi e I(z) and Zai =0
i=1
Therefore A is closed.

Conclusion: Ty, (z) = A= {(a1,...,,) ER" 1, > 0Vi € [(Z) and >, o =0}.
As desired.
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ii. N, () ={(Bo,...,00) : Po € Ry +{(B1,...,Bn) : i <0Vie I(z) and 0 otherwise}.

Since A,, is closed and convex, then its normal and tangent cones are closed and convex.
Thus Ny, (z) = (Ta,(2))".
Define S = {(Bo,...,00) : Bo € R} +{(B1,...,0n) : i <0Vie€ I(z) and 0 otherwise}.

Inclusion 1: Ny, (z) C S

Case 1: I[(Z)=10
Let ¢ € Ny, (Z). Since I(Z) = () then 3; = 0 for all ¢, and thus: S = {(5o,...,050) : Bo € R}.

Prove by contradiction: Assume ¢ ¢ S.
Therefore, there exists J = {j € {1,...,n} : (; # ¢ for all i ¢ J} # (). This means there is
at least one index j for which the component (; is unique among all other ¢; for all i ¢ J.

This implies that for all ¢ ¢ J, the components (; = z are identical, and that for all j € J,
the components (; # 2.

Since ¢ € Ny, (Z) then (¢, ) <0 for all o € Ty, (Z). Evaluate the inner product:

i@-ai =Y GaY Gai =Y Gajz Y ai=Y  (ajtz (O—Z Oéj) =Y (G=2)a; <0
=1

jeJ i¢J jeJ i¢J jedJ jeJ jeJ

Choose a particular o such that sgn(o;) = sgn(¢; — z), Vj € J and that at least one a; # 0.
This gives (¢, ) = >_c;(( — z)a; > 0. (sgn(-) denotes the sign)
Contradiction.
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Case 2: [(z) # 0
For ease of notation let I = I(z) and J = I(z)°.
5o VieJ

Let ( € N, Since I # () then for any s € S its component: s; =
¢ A (T). # y p {504-@' Viel

Prove by contradiction: Assume ¢ ¢ S.
Therefore, there exists Jy C J : (j, # Bo, Vio € Jo # 0.
Likewise, there exists Iy C I : G, # Bo + 53s, Vig € Iy # 0.

G =05 VieJ—Jy
i = +- i Vﬁ E [~—-I

This simply means that: G=bo+p Z °
G # Do Vi € Jo

G#Bo+ B Vi€l
Since ¢ € Ny, (Z) then (¢, ) <0 for all & € Ty, (Z). Evaluate the inner product:

D Gai =Y Gotig+ Y Goap + > Gait Y Gay
i=1

10€1o Jo€Jo iel—1Iy jeJ—Jo

D IR ICEIED SELERI (D SEED DEY
i0€lp jo€Jo iel—1Iy iel—1Iy jeJ—Jo

D IR NIED SETERTCED DI 90
i€l Jjo€Jo i€el—1Iy i€y Jj€Jo

= Z (Gio — Bo)eviy + Z (Go — Bo)arjy + Z Bici <0
10€lp Jo€Jo el—1Iy

Before choosing an instance of « realize that ((;, —f5), (¢, —Bo), @j, € R and that a;,, a; > 0.
(Refer to sums to identify which indices belong to which set)

Choose a particular o such that o; = 0, Vi € I, and that sgn(a;,) = sgn(¢;, — 2), Vjo € Jo
and that at least one v, # 0. This gives (C,a) = >, ;. (¢ — 2)ayy, > 0.
Contradiction.

Inclusion 2: S C Ny, (Z)
Let s € S be arbitrary. As such s = (8y + S1, ..., 5o + Bn). For all a € Ty, (Z), obtain:

(s, ) = Z(50+ﬁz a; ﬁozaﬂr Zﬁzaz"{' Zﬁzaz_ Z@%SO

i=1 i€l(Z ¢1(z €l(z

since 3; <0 and a; > 0 for all i € I(z) and §; =0 for all ¢ ¢ I(Z) and Y, a; = 0.

Observe that (s,a) < 0 for all & € Ty, (Z) and conclude that s € N, (Z), as desired.
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Part (d): Now let f : R® — R be convex and differentiable. Prove that z € A, is a global
minimum of f over A, iff there is a constant ¢ such that

{fmi (@) =¢ ¥ig¢l()
fu,(Z)>¢ Viel(z)

Direction 1 (=>): Assume = € A, is a global minimum of f over A,,.
Since f is convex and differentiable, and that A, is closed and convex, then:
Having 0 € V f(Z) + Ny, (Z), then there exists a vector s € Ny, (Z) such that Vf(z) = —s.

—fo Vi ¢ I1(z)

o) = =oi= {—60 — B Viel()

It is equivalent to state the existence of the constant ¢ = —f.
Knowing that 8; < 0 for all ¢ € I(Z) then —fy — ; =¢ — (3; > ¢C.

The desired result is thus obtained.
Direction 2 (<=): There exists a constant ¢ such that f,,(z) is given as above.
The function f is convex and differentiable over R, and z € A,,.

Evaluate the inner product (z — z, Vf(z)), Vz € A,.

Realize that f,, = ¢ or f,, > ¢, therefore f, > c.
Thus, (x —Z,Vf(Z)) = >0 (z; — &) fo,(T) 2 2> 0 (z; — ;) = (1 — 1) =0, Va € A,,.

Conclude that Z is a local minimum over A, since (z — Z, Vf(z)) > 0, Vz € A,,.
Since A, is closed and also convex, then obtain the desired result.
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Part (e): Minimize f(x,y,2) = 2>+ 2y* + 2% and g(z,y,2) = = + 2y + z over As.
Here f and g are both convex and clearly differentiable.

The Hessian V2f = diag(2,4,2) is positive-definite since all eigenvalues are strictly posi-
tive, thus f is strictly convex. The function ¢ is convex because it is linear.

Obtain from previous results that Az = {(z,y,2) ER3:x +y+2=1and z,y,z > 0}.
Also proven earlier was that Az is closed and convex.

Let (z,y, z) be the global minimum of f over Az and (z*,y*, 2*) be that of g.
Compute the gradients V f = (2z,4y,22) and Vg = (1,2,1).

Minimize f:
Assume that the optimal point is not at the boundaries, thus 1(Z, 7, z) = 0.
From Part (d) obtain that Vf(z,7,2) = (¢, ¢,¢) = (27,4y, 2Z).

The point (Z,7, Z) = $(2¢,¢,2¢). And since T € As, then: T+ j+z=5¢c=1<=¢=1.
Check the boundaries; at the vertices f(1,0,0) = f(0,0,1) =1 and f(0,1,0) = 2.
Edge 1: f(\,0,1—X)=2)2—2)\+ 1. Set f/(\) =0= A =1 = f=1
EdgeQ:f(O)\l A)=3N=2X+1 Set f/(\)=0=A=1= f=2

Edge 3: f —X0)=3X2—4A+2 Set f/N)=0=A=3= f=12

(A,
Here A\ €]0, 1[. These are to be compared against the assumed optimal point.

(S]]

, %) and the optimum is f* =

ot

The optimal point is thus (z,y, z) = (%,

Minimize g:
Since ¢ is linear then its minimal point (z*, y*, 2*) € bdry(As). This is further demonstrated
by the fact that Vg(z*,y*, 2*) = (¢,¢,¢) = (1,2,1) is a contradiction.

Check the boundaries; at the vertices ¢g(1,0,0) = ¢(0,0,1) =1 and ¢(0,1,0) = 2.
Edge 1: g(A,0,1 =X)=A+1—-A=1

Edge?:g(O)\l A)=A+1>1

Edge 3: g(A, ,0)=2—-XA>1.
Here A 6]0,1[.

Conclude that (z*,y*, 2*) = (A,0,1 — A) for all A € [0,1] are the global minimal points
and that g* = 1 is the global minimum.

10
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