James AKI Convex Analysis: Select Works

Solution to “Quadratic Programming”
We consider the quadratic programming problem:

py {min @) = (@ = 22)° & (@2 4 29)° + (@3 — 1)’
s.t.  x1 + 2x9 + 3x3 = 10 and 3x; + 229 + x5 = 14.

Part (a): Find a vector b € R?, a symmetric matrix W of size 3 x 3 and a matrix A of size
2 x 3 such that

1
flz) = §(Wx, x) and the constraint is Az = b.

Propose the following vectors and matrices:

4 -2 -2 71
s R v A S
—2 2 4 T3

Compute the matrix products,

45[,'1 — 2.1'2 — 21’3
Wx = | —2x; +4xo +223| , Ax = [

1+ 229 + 39@,]
—2x1 4+ 229 + 413

3I1 + 2.I2 + 3

Validate the choice of W,

1 1
§<WI, x) = 3 (41:% — 221Ty — 20103 + 473 + 27003 — 22129 + 22973 + 4x§)
= 295% + 2x§ + 2x§ — 2x1%9 + 22923 — 22123
=27 — 2019 + X5 + 15 + 2093 + 23 + 75 — 27173 + 77
= ([E1 — 1‘2)2 + (SL’Q + SE3)2 + (ZBg — IL'1)2
= f(z).

The constraints x; +2x5+3x3 = 10 and 3z1 + 2x5 +x3 = 14 are clearly equivalent to Az = b.
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Part (b): Verify that W is positive definite and that the rank of A is 2.

Compute the eigenvalues of W,
4 -\ =2 -2
det(W — M) =| =2 4—\ 2
-2 2 4 — )\
=4 —-N?—124— )\ +16
= A3 12)\% — 48\ + 64 — 48 + 12\ + 16
= A3+ 12)\% — 36\ + 32
= A3+ 4X% — 4N+ 8MF — 32X\ + 32
= A2 =4\ +4) +8(\* — 4\ +4)
=8-NA—-2)?2=0
The eigenvalues of W are Ay = Ay = A2 =2>0and \3 =8 > 0.
Therefore W is positive definite.

Reduce A to row echelon form,

1 2 3
0 —4 -8

5 9 1 }R1<—R1+(1/2)R2 [1 0 _1}

0 —4 -8

The rows of A are clearly linearly independent, and therefore rank(A) = 2.
Part (c): Diagonalize the matrix W and deduce its square root W1/2,

Compute the eigenvectors of W for A\; o = 2,

2 -2 2] v
W =DM =1—2 2 2| [n] =0
-2 2 2] v

Since this eigenvalue is a double-solution, set two parameters v, = s, and vg = t.
Obtain 2v; — 2vy — 2v3 = 0, giving v; = s + 1.

s+t 1 1
vh?) = S =s|1{+¢]0
t 0 1

Compute the eigenvector of W for A\3 = §,
-4 -2 =27 [wn

(W=D = |2 —4 2| ]| =0
—2 2 —4] |uvy
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Set vy = t to obtain —4v; — 2t — 2v3 = 0 and —2v; — 4¢ + 2v3 = 0.
Add these two equations to obtain —6v; — 6t = 0 = v, = —t.
Subtract them to obtain 6t — 6vs = 0 = v3 = t.

The matrix W is diagonalizable since its algebraic multiplicities my,, = 2 and my, = 1 are
equal to its geometric multiplicities My, , = dimv? = 2 and M), = dimv® = 1.

diag(2,2,8) and

It can be written as W = VDV ™! with D = diag(\1, Ay, A3) =
= (—1)""m;; (Cofactor Method).

V=[o® @ @] Use V! = (det V)'[Cy]T where ¢;;
Compute the determinant,

1 1 —1
detV =1 0 1]|=-3.
0 1

Compute the cofactor matrix, and thus obtain the inverse of V,

-1 -1 1 . 1 2 -1
Cy=1-2 1 -1 :>V—1=5 1 -1 2
1 -2 -1 -1 1 1

It is now possible to compute the square root matrix of W using W2 = V. D'/2y -1,
Establish D'/2 = diag(ﬁ, V2, \/g) = v/2diag(1,1,2).

\/51 -1

W1/2 —
3

1 1 00
10 0101 -1 2]|=
01 0 0 2
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Part (d): Let Z be a particular solution of the system Az = b. Prove, using the transfor-
mation y = W'/2(z — 7), that (P) is equivalent to the following:

1

min = |yl + (W'°z,y)
(@Q) 2
st. AWV =0,

T . .
Let x = [:ﬁl T 92*3] be a particular solution such that Az = b.

/2 4 -1 1| |z1— NG) 41 — Z1) — (x2 — Ta) — (3 — T3)

y:WI/Q(IE—(Z’) :? —1 4 1 To9 — To :? —(Il—f1>+4<l’2—§32)+1'3—i’3
-1 1 4 1’3—.7_33 —(Il —f1)+$2—j}2+4(l’3—i‘3)

Compute the normed expression:

L R CTAE N S
+ (=21 + F1 + dag — ATy + 13 — T3)?
+ (=21 4 Ty 4 22 — Ty + da3 — 473)°]
= 2$% — 21129 + 2:63 — 2x123 + 220003 + 2x§ — 4211 + 22971 + 22371 + 2:%% + 22129

— 42Ty — 2037y — 21Ty + 275 + 201 T3 — 20973 — 43Ty — 27T + 2T9T3 + 275

Compute the inner product:

<W1/2fa?/> =3 —Z1 +4T2 + T3 —x1 + Ty + 4w — 4T + 23 — T3

4fl—f2—i‘3 \/§ 4I1—4f1-$2+i’2—l’3+[fg
I - ) -
T1+ To + 475 —X1+ X1+ o — To + 43 — 4T3

= 4$1ZZ‘1 — 21’2{2'1 — 21’3f1 — 41‘% — 21’1[2’2

+ 4x9Tg + 2037y + AT1Tg — 475 — 20173 + 20973 + 4T3T3 + 471 T3 — AToT3 — 4T3

Add their expansions:

%Hy”2 + (W%, y) = 222 — 2019 + 202 — 20125 + 2w923 + 222
— 272 + 2317y — 275 + 27173 — 2ToT3 — 273
= (11 — 22)* + (29 + 23)* + (23 — 11)?
— (T — T2)? — (Tg + 73)° — (T3 — 1)?
= f(z) = f(2)

The constraint AW =12y = AWY2W12(y —7) = Ar — AT = 0 <= Az = AT <= Az =b.
Here f(Z) is a constant (T is a particular value), thus arg min,[f(x) — f(Z)] = argmin, f(x).

The constraints and minimization in (P) and (@) are equivalent, thus (P) <= (Q).

4
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Part (e): Prove that (@) has a unique solution that you compute.

A problem (R) of the form:
5ol + (a.)
min = a,
(R) B Y Y
st. By=0

where a € R", dim B = m x n, and rank(B) = m, has a unique solution y* of the form:
y* = [BT(BB")"'B - I]a.

In (Q), the conditions hold with n = 3 and m = 2 since the vector a = W2z € R?,
B = AW~12 with dim(B) = 2 x 3, and rank(AW~'/2) = rank(A) = 2 (since W~/2 is non-
singular). Thus, (@) has a unique solution y* as above, with the appropriate substitutions.

Compute the matrix W~'/2 using the Cofactor Method as in Part (c), and deduce B:

5 1 1 5 1 1
2 21 2 2[5 4
W_1/2:\1/_2_ Lo -l B:AW_MZ%L 2 ﬂ Lol :%B 6 ;}
1 -1 5 1 -1 5

Obtain a particular solution z = [2 4 O]T by solving Az = b with z3 = 0.
Compute the vector a,

4 -1 —17 2 4

5 5
a:WmaZ*:\/?— 14 1| |4 :% 14
11 4o 9

Compute the product BBT and its inverse,

(LA -E e bl 3

- & ot

Compute the expression of matrices in the explicit solution of y*,

2[5 9 —25 40 5

N S 1 /V2 7 5[5 4 7 1
B'(BB") B—13=E(7> 46 {_5 < llg ¢ 3 “=gg |40 —64 8
73 -5 8 -1

Obtain the solution y* (with which the minimum value in (@) could easily be obtained),

=25 40 5 4 )

2 2
*:3;/_90 40 —64 8 12 :§ -8
-5 & -1 2 1

Y
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Part (f): Deduce that (P) has a unique solution that you compute.

Since y = W'?(x — ) then 2* = 7 + W~1/2y*,

5 1 1 5 2 1
2 X /2
M15_1 —8| = 4| + [=2
12 x 3

2
= 4| +
0 1 -1 5 1 0 3

Finally, the value for which (P) is optimal is,
3
= |2
1

And with z} = 3,25 = 2,25 = 1, the minimum f(z*) is,

f@)=0B-22*+2+1)*+(1-3)?
=1+9+4
=14
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