
James Akl Convex Analysis: Select Works

Solution to “Quadratic Programming”

We consider the quadratic programming problem:

(P )

{
min f(x) = (x1 − x2)2 + (x2 + x3)

2 + (x3 − x1)2

s.t. x1 + 2x2 + 3x3 = 10 and 3x1 + 2x2 + x3 = 14.

Part (a): Find a vector b ∈ R2, a symmetric matrix W of size 3× 3 and a matrix A of size

2× 3 such that

f(x) =
1

2
〈Wx, x〉 and the constraint is Ax = b.

Propose the following vectors and matrices:

W =

 4 −2 −2

−2 4 2

−2 2 4

 , x =

x1x2
x3

 , A =

[
1 2 3

3 2 1

]
, b =

[
10

14

]

Compute the matrix products,

Wx =

 4x1 − 2x2 − 2x3
−2x1 + 4x2 + 2x3
−2x1 + 2x2 + 4x3

 , Ax =

[
x1 + 2x2 + 3x3
3x1 + 2x2 + x3

]
.

Validate the choice of W ,

1

2
〈Wx, x〉 =

1

2

(
4x21 − 2x1x2 − 2x1x3 + 4x22 + 2x2x3 − 2x1x2 + 2x2x3 + 4x23

)
= 2x21 + 2x22 + 2x23 − 2x1x2 + 2x2x3 − 2x1x3

= x21 − 2x1x2 + x22 + x22 + 2x2x3 + x23 + x23 − 2x1x3 + x21

= (x1 − x2)2 + (x2 + x3)
2 + (x3 − x1)2

= f(x).

The constraints x1+2x2+3x3 = 10 and 3x1+2x2+x3 = 14 are clearly equivalent to Ax = b.
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Part (b): Verify that W is positive definite and that the rank of A is 2.

Compute the eigenvalues of W ,

det(W − λI) =

∣∣∣∣∣∣
4− λ −2 −2

−2 4− λ 2

−2 2 4− λ

∣∣∣∣∣∣
= (4− λ)3 − 12(4− λ) + 16

= −λ3 + 12λ2 − 48λ+ 64− 48 + 12λ+ 16

= −λ3 + 12λ2 − 36λ+ 32

= −λ3 + 4λ2 − 4λ+ 8λ2 − 32λ+ 32

= −λ(λ2 − 4λ+ 4) + 8(λ2 − 4λ+ 4)

= (8− λ)(λ− 2)2 = 0

The eigenvalues of W are λ1 = λ2 = λ1,2 = 2 ≥ 0 and λ3 = 8 ≥ 0.

Therefore W is positive definite.

Reduce A to row echelon form,

A =

[
1 2 3

3 2 1

]
R2 ← R2 − 3R1−−−−−−−−−−−→

[
1 2 3

0 −4 −8

]
R1 ← R1 + (1/2)R2−−−−−−−−−−−−−−→

[
1 0 −1

0 −4 −8

]
The rows of A are clearly linearly independent, and therefore rank(A) = 2.

Part (c): Diagonalize the matrix W and deduce its square root W 1/2.

Compute the eigenvectors of W for λ1,2 = 2,

(W − λ1,2I)v(1,2) =

 2 −2 −2

−2 2 2

−2 2 2

v1v2
v3

 = 0

Since this eigenvalue is a double-solution, set two parameters v2 = s, and v3 = t.

Obtain 2v1 − 2v2 − 2v3 = 0, giving v1 = s+ t.

v(1,2) =

s+ t

s

t

 = s

1

1

0

+ t

1

0

1


Compute the eigenvector of W for λ3 = 8,

(W − λ3I)v(3) =

−4 −2 −2

−2 −4 2

−2 2 −4

v1v2
v3

 = 0
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Set v2 = t to obtain −4v1 − 2t− 2v3 = 0 and −2v1 − 4t+ 2v3 = 0.

Add these two equations to obtain −6v1 − 6t = 0 =⇒ v1 = −t.
Subtract them to obtain 6t− 6v3 = 0 =⇒ v3 = t.

v(3) =

−tt
t

 = t

−1

1

1


The matrix W is diagonalizable since its algebraic multiplicities mλ1,2 = 2 and mλ3 = 1 are

equal to its geometric multiplicities Mλ1,2 = dim v(1,2) = 2 and Mλ3 = dim v(3) = 1.

It can be written as W = V DV −1 with D = diag(λ1, λ2, λ3) = diag(2, 2, 8) and

V =
[
v(1) v(2) v(3)

]
. Use V −1 = (detV )−1[CV ]T where cij = (−1)i+jmij (Cofactor Method).

Compute the determinant,

detV =

∣∣∣∣∣∣
1 1 −1

1 0 1

0 1 1

∣∣∣∣∣∣ = −3.

Compute the cofactor matrix, and thus obtain the inverse of V ,

CV =

−1 −1 1

−2 1 −1

1 −2 −1

 =⇒ V −1 =
1

3

 1 2 −1

1 −1 2

−1 1 1

 .
It is now possible to compute the square root matrix of W using W 1/2 = V D1/2V −1.

Establish D1/2 = diag
(√

2,
√

2,
√

8
)

=
√

2 diag(1, 1, 2).

W 1/2 =

√
2

3

1 1 −1

1 0 1

0 1 1

1 0 0

0 1 0

0 0 2

 1 2 −1

1 −1 2

−1 1 1

 =

√
2

3

 4 −1 −1

−1 4 1

−1 1 4


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Part (d): Let x̄ be a particular solution of the system Ax = b. Prove, using the transfor-

mation y = W 1/2(x− x̄), that (P ) is equivalent to the following:

(Q)

min
1

2
‖y‖2 + 〈W 1/2x̄, y〉

s.t. AW−1/2y = 0.

Let x̄ =
[
x̄1 x̄2 x̄3

]T
be a particular solution such that Ax̄ = b.

y = W 1/2(x−x̄) =

√
2

3

 4 −1 −1

−1 4 1

−1 1 4

x1 − x̄1x2 − x̄2
x3 − x̄3

 =

√
2

3

4(x1 − x̄1)− (x2 − x̄2)− (x3 − x̄3)
−(x1 − x̄1) + 4(x2 − x̄2) + x3 − x̄3
−(x1 − x̄1) + x2 − x̄2 + 4(x3 − x̄3)


Compute the normed expression:

1

2
‖y‖2 =

1

9

[
(4x1 − 4x̄1 − x2 + x̄2 − x3 + x̄3)

2

+ (−x1 + x̄1 + 4x2 − 4x̄2 + x3 − x̄3)2

+ (−x1 + x̄1 + x2 − x̄2 + 4x3 − 4x̄3)
2
]

= 2x21 − 2x1x2 + 2x22 − 2x1x3 + 2x2x3 + 2x23 − 4x1x̄1 + 2x2x̄1 + 2x3x̄1 + 2x̄21 + 2x1x̄2

− 4x2x̄2 − 2x3x̄2 − 2x̄1x̄2 + 2x̄22 + 2x1x̄3 − 2x2x̄3 − 4x3x̄3 − 2x̄1x̄3 + 2x̄2x̄3 + 2x̄23

Compute the inner product:

〈W 1/2x̄, y〉 =

√
2

3

 4x̄1 − x̄2 − x̄3
−x̄1 + 4x̄2 + x̄3
x̄1 + x̄2 + 4x̄3

 · √2

3

 4x1 − 4x̄1 − x2 + x̄2 − x3 + x̄3
−x1 + x̄1 + 4x2 − 4x̄2 + x3 − x̄3
−x1 + x̄1 + x2 − x̄2 + 4x3 − 4x̄3


= 4x1x̄1 − 2x2x̄1 − 2x3x̄1 − 4x̄21 − 2x1x̄2

+ 4x2x̄2 + 2x3x̄2 + 4x̄1x̄2 − 4x̄22 − 2x1x̄3 + 2x2x̄3 + 4x3x̄3 + 4x̄1x̄3 − 4x̄2x̄3 − 4x̄23

Add their expansions:

1

2
‖y‖2 + 〈W 1/2x̄, y〉 = 2x21 − 2x1x2 + 2x22 − 2x1x3 + 2x2x3 + 2x23

− 2x̄21 + 2x̄1x̄2 − 2x̄22 + 2x̄1x̄3 − 2x̄2x̄3 − 2x̄23

= (x1 − x2)2 + (x2 + x3)
2 + (x3 − x1)2

− (x̄1 − x̄2)2 − (x̄2 + x̄3)
2 − (x̄3 − x̄1)2

= f(x)− f(x̄)

The constraint AW−1/2y = AW−1/2W 1/2(x− x̄) = Ax−Ax̄ = 0⇐⇒ Ax = Ax̄⇐⇒ Ax = b.

Here f(x̄) is a constant (x̄ is a particular value), thus arg minx[f(x)− f(x̄)] = arg minx f(x).

The constraints and minimization in (P ) and (Q) are equivalent, thus (P )⇐⇒ (Q).
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Part (e): Prove that (Q) has a unique solution that you compute.

A problem (R) of the form:

(R)

min
1

2
‖y‖2 + 〈a, y〉

s.t. By = 0

where a ∈ Rn, dimB = m× n, and rank(B) = m, has a unique solution y∗ of the form:

y∗ =
[
BT
(
BBT

)−1
B − In

]
a.

In (Q), the conditions hold with n = 3 and m = 2 since the vector a = W 1/2x̄ ∈ R3,

B = AW−1/2, with dim(B) = 2× 3, and rank(AW−1/2) = rank(A) = 2 (since W−1/2 is non-

singular). Thus, (Q) has a unique solution y∗ as above, with the appropriate substitutions.

Compute the matrix W−1/2 using the Cofactor Method as in Part (c), and deduce B:

W−1/2 =

√
2

12

5 1 1

1 5 −1

1 −1 5

 B = AW−1/2 =

√
2

12

[
1 2 3

3 2 1

]5 1 1

1 5 −1

1 −1 5

 =

√
2

6

[
5 4 7

9 6 3

]

Obtain a particular solution x̄ =
[
2 4 0

]T
by solving Ax = b with x3 = 0.

Compute the vector a,

a = W 1/2x̄ =

√
2

3

 4 −1 −1

−1 4 1

−1 1 4

2

4

0

 =

√
2

3

 4

14

2


Compute the product BBT and its inverse,

BBT =

(√
2

6

)2 [
5 4 7

9 6 3

]5 9

4 6

7 3

 =

[
5 5

5 7

]
=⇒

(
BBT

)−1
=

1

10

[
7 −5

−5 5

]
.

Compute the expression of matrices in the explicit solution of y∗,

BT
(
BBT

)−1
B − I3 =

1

10

(√
2

6

)2
5 9

4 6

7 3

[ 7 −5

−5 5

] [
5 4 7

9 6 3

]
− I3 =

1

90

−25 40 5

40 −64 8

−5 8 −1

 .
Obtain the solution y∗ (with which the minimum value in (Q) could easily be obtained),

y∗ =

√
2

3× 90

−25 40 5

40 −64 8

−5 8 −1

 4

12

2

 =

√
2

3

 5

−8

1

 .
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Part (f): Deduce that (P ) has a unique solution that you compute.

Since y = W 1/2(x− x̄) then x∗ = x̄+W−1/2y∗.

x∗ =

2

4

0

+

√
2×
√

2

12× 3

5 1 1

1 5 −1

1 −1 5

 5

−8

1

 =

2

4

0

+

 1

−2

3


Finally, the value for which (P ) is optimal is,

x∗ =

3

2

1


And with x∗1 = 3, x∗2 = 2, x∗3 = 1, the minimum f(x∗) is,

f(x∗) = (3− 2)2 + (2 + 1)2 + (1− 3)2

= 1 + 9 + 4

= 14

6

https://jamesakl.com/

	Solution to ``Quadratic Programming"

