
James Akl Convex Analysis: Select Works

Solution to “Duality & Infimal–Convolution”

For f1 and f2 two proper functions from Rn −→ R ∪ {∞}, we define the inf-convolution of

f1 and f2, denoted by f1�f2, is the function defined on Rn by:

(f1�f2)(x) := inf
z
{f1(z) + f2(x− z)}.

Part (a): Prove, using the definitions, that (f1�f2)∗ = f ∗1 + f ∗2 .

By definition obtain, (f1�f2)∗(y) = supx
{
〈x, y〉 − infz{f1(z) + f2(x− z)}

}
.

Since z + (x − z) = x, then maximizing w.r.t. z is equivalent to minimizing w.r.t x − z

or x. Thus, infz{f1(z) + f2(x− z)} = infx{f1(z) + f2(x− z)} = − supx{−f1(z)− f2(x− z)}.

Replace above to obtain (f1�f2)∗(y) = supx
{
〈x, y〉+supx{−f1(z)−f2(x−z)}

}
. Simplify to

get: (f1�f2)∗(y) = supx{〈x, y〉−f1(z)−f2(x−z)} = supx{〈z, y〉−f1(z)+〈x−z, y〉−f2(x−z)}.

Since x = z + (x − z), then maximizing w.r.t. x is equivalent to maximizing w.r.t z or

x− z. Thus, (f1�f2)∗(y) = supz,x−z{〈z, y〉 − f1(z)︸ ︷︷ ︸
φ(z)

+ 〈x− z, y〉 − f2(x− z)︸ ︷︷ ︸
ψ(x−z)

}.

Since φ and ψ are maximized w.r.t. their respective variable, the supremum can be split.

Obtain, (f1�f2)∗(y) = supz{〈z, y〉− f1(z)}+ supx−z{〈x− z, y〉− f2(x− z)} = f ∗1 (y) + f ∗2 (y).

Conclude (f1�f2)∗(y) = (f ∗1 + f ∗2 )(y), as desired.

Part (b): Now let C be a nonempty closed and convex set and let dC(·) be the distance

function to the set C.

i. Verify that dC = δC�‖ · ‖.

Expand δC�‖ · ‖(x) = infc{δC(c) + ‖x− z‖}. Since only the case c ∈ C is of interest, set the

restriction and obtain that δC(c) = 0. Thus obtain δC�‖ · ‖(x) = infc∈C ‖x− z‖ = dC(x).

ii. Deduce that (dC)∗(·) = σC(·) + δB∗(·), where σC(·) is the support of C and B̄∗ is the unit

closed ball for the dual norm.

Assert from known results that (δC)∗(·) = σC(·) and (‖ · ‖)∗ = δB∗(·).
From Part (a), obtain (dC)∗(·) = (δC)∗(·) + (‖ · ‖)∗ = σC(·) + δB∗(·).
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iii. Deduce that

∂(dC)∗(y) = ∂σC(y) + ∂δB∗(y).

Notice that σC(y) and δB∗(y) are closed and convex. Since δC and ‖ · ‖ are both clearly

convex and proper, then conclude that σC(y) and δB∗(y) are also proper.

Also note that int
(
dom(σC)

)
∩ int

(
dom(δB∗)

)
= Rn ∩ Rn = Rn.

These conditions permit the use of the Sum Rule: ∂(f ∗1 +f ∗2 )(y) = ∂f ∗1 (y)+∂f ∗2 (y), ∀y ∈ Rn.

Since (dC)∗(y) = σC(y) + δB∗(y), obtain the desired result.

iv. Prove that y ∈ ∂dC(x) if and only if there exist x1 ∈ C and x2 ∈ Rn such that

• x = x1 + x2

• y ∈ ∂δC(x1) and y ∈ ∂‖ · ‖(x2).

Since ∂(dC)∗(y) = ∂σC(y) + ∂δB∗(y), then:

x ∈ ∂(dC)∗(y) =⇒ ∃x1, x2 : x1 + x2 = x and (x1, x2) ∈ ∂σC(y)× ∂δB∗(y).

The converse of this statement is trivially obtained since it holds ∀x1, x2 : x1 + x2 = x

and (x1, x2) ∈ ∂σC(y)× ∂δB∗(y). Thus conclude with the equivalence:

x ∈ ∂(dC)∗(y)⇐⇒ ∃x1, x2 : x1 + x2 = x and (x1, x2) ∈ ∂σC(y)× ∂δB∗(y) (4.1)

Since dC is convex and proper, then (d)∗C is proper. Having:

(dC)∗, σC = (δC)∗, and δB∗ = (‖ · ‖)∗ all closed, convex and proper, apply the following:

x ∈ ∂(dC)∗(y)⇐⇒ y ∈ ∂dC(x)

x1 ∈ ∂σC(y)⇐⇒ y ∈ ∂δC(x1)

x2 ∈ ∂δB∗(y)⇐⇒ y ∈ ∂‖ · ‖(x2)

Replace in (4.1) each statement with its equivalent statement as above:

y ∈ ∂dC(x)⇐⇒ ∃x1, x2 : x1 + x2 = x and y ∈ ∂δC(x1) and y ∈ ∂‖ · ‖(x2)

Note that in both (=⇒) and (⇐=), x1 ∈ dom(δC) = C and x2 ∈ dom(‖ · ‖) = Rn in order

for ∂δC(x1) and ∂‖ · ‖(x2) to exist. Thus obtain:

y ∈ ∂dC(x)⇐⇒ ∃x1 ∈ C, x2 ∈ Rn : x1 + x2 = x and y ∈ ∂δC(x1) and y ∈ ∂‖ · ‖(x2) (4.2)

As desired.
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v. Deduce that

∂dC(x) =


NC(x) ∩ B̄ if x ∈ C,
x− cx
‖x− cx‖

if x /∈ C,

where B̄ is the unit closed ball and cx is the unique projection of x to the set C.

Rewrite (4.2) with x1 = c ∈ C and x2 = x− c ∈ Rn:

y ∈ ∂dC(x)⇐⇒ y ∈ ∂δC(c) and y ∈ ∂‖ · ‖(x− c) (4.3)

Case 1 : x ∈ C
For x = c ∈ C, obtain y ∈ ∂δC(x) and y ∈ ∂‖ · ‖(0).

Realize that ∂δC(x) = NC(x) (HW5.4: Case x ∈ C) and ∂‖ · ‖(0) = B̄.

Therefore y ∈ NC(x) ∩ B̄ if x ∈ C, thus obtain from (4.3) that ∂dC(x) ⊂ NC(x) ∩ B̄
and ∂dC(x) ⊃ NC(x) ∩ B̄ if x ∈ C. Conclude that ∂dC(x) = NC(x) ∩ B̄ if x ∈ C.

Case 2 : x /∈ C
For x /∈ C, notice that x 6= c ∈ C and 0 6= x− c ∈ Rn:

Obtain ∂δC(c) = NC(c) and ∂‖ · ‖(x− c) =
{

(x− c)/‖x− c‖
}

.

Here y ∈ NC(c) and y = (x − c)/‖x − c‖. Since C is closed and convex and c ∈ C,

then: 〈y, c′ − c〉 ≤ 0, ∀c′ ∈ C and 〈x− cx, c− cx〉 ≤ 0.

Realize that 〈y, c′ − c〉 ≤ 0⇐⇒ 〈x− c, c′ − c〉 ≤ 0 for all c′ ∈ C.

Choose c′ = cx and obtain 〈x− c, cx − c〉 ≤ 0 and 〈x− cx, c− cx〉 ≤ 0

Addition: 〈x− c, cx − c〉+ 〈x− cx, c− cx〉 = 〈cx − c, cx − c〉 = ‖c− cx‖2 ≤ 0⇐⇒ c = cx.

Therefore, y ∈ NC(c) and y = (x− c)/‖x− c‖ gives y = (x− cx)/‖x− cx‖.

Thus obtain from (4.3) that ∂dC(x) ⊂
{

(x−cx)/‖x−cx‖
}

and ∂dC(x) ⊃
{

(x−cx)/‖x−cx‖
}

if x /∈ C. Conclude that ∂dC(x) =
{

(x− cx)/‖x− cx‖
}

if x /∈ C.

vi. Deduce that dC(·) is differentiable at any x /∈ C.

The function dC(·) is clearly proper, lower-semicontinuous, and is convex. Since x /∈ C =⇒
x ∈ int(dom(dC)) = Rn, then:

Having ∂dC(x) =

{
x− cx
‖x− cx‖

}
for x /∈ C, conclude dC(x) is differentiable for any x /∈ C.
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